Abstract

Safe lower jaw implantations require precautions to avoid damaging the alveolar nerve. The prevailing methods are preoperative. In this study, we propose a novel approach to measure the distance between a pilot-drill and the alveolar nerve by employing high-frequency impedance measurements. The objective is to provide in vivo real-time information as an early warning of the proximity of the alveolar nerve. The method is examined and tested on animal samples. The impedance measurements were performed using a high-frequency network analyzer. Overall 40 pilot drillings were distributed over five sheep mandibles, with four on each side. Drillings were performed in three steps: inside the cortical layer, inside the spongiosa, and well inside the nerve canal. The inductance measurements were performed with a connected pilot drill, followed by an immediate 3D cone-beam computed tomography (CT) to measure the distance between the tip of the drill and the nerve canal. The measurements show that impedance information is a reliable indicator for proximity of the drill to the nerve. We observe a general trend of decreasing inductance as the drill approaches the nerve and find that at very high frequencies one can detect the closeness to the nerve from characteristic ratios of impedance at nearby frequencies. We report also that using phase information increases the reliability of this method. The findings provide a solid proof of concept for the proposed method. While the results are promising at this stage, the applicability for in vivo conditions requires further studies.

References

1.
Gaviria
,
L.
,
Salcido
,
J. P.
,
Guda
,
T.
, and
Ong
,
J. L.
,
2014
, “
Current Trends in Dental Implants
,”
J. Korean Assoc. Oral Maxillofac. Surg.
,
40
(
2
), pp.
50
60
.10.5125/jkaoms.2014.40.2.50
2.
Juodzbalys
,
G.
,
Wang
,
H.-L.
,
Sabalys
,
G.
,
Sidlauskas
,
A.
, and
Galindo-Moreno
,
P.
,
2013
, “
Inferior Alveolar Nerve Injury Associated With Implant Surgery
,”
Clin. Oral Implants Res.
,
24
(
2
), pp.
183
190
.10.1111/j.1600-0501.2011.02314.x
3.
Hammerle
,
C.
,
Jensen
,
S.
,
Jokstad
,
A.
,
Katsuyama
,
H.
,
Kleinheinz
,
J.
,
Kunavisarut
,
C.
,
Mardas
,
N.
,
Monje
,
A.
,
Papaspyridakos
,
P.
,
Payer
,
M.
,
Schiegnitz
,
E.
,
Smeets
,
R.
,
Stefanini
,
M.
,
Bruggenkate
,
C. T.
,
Vazouras
,
K.
,
Weber
,
H.-P.
,
Weingart
,
D.
, and
Windisch
,
P.
,
2018
, “
Group 1 ITI Consensus Report: The Influence of Implant Length and Design and Medications on Clinical and Patient-Reported Outcomes
,”
Clin. Oral Implants Res.
,
29
, pp.
69
77
.10.1111/clr.13342
4.
Clark
,
D.
,
Barbu
,
H.
,
Lorean
,
A.
,
Mijiritsky
,
E.
, and
Levin
,
L.
,
2017
, “
Incidental Findings of Implant Complications on Postimplantation CBCTs: A Cross-Sectional Study
,”
Clin. Implant Dent. Relat. Res.
,
19
(
5
), pp.
776
782
.10.1111/cid.12511
5.
Fokas
,
G.
,
Vaughn
,
V. M.
,
Scarfe
,
W. C.
, and
Bornstein
,
M. M.
,
2018
, “
Accuracy of Linear Measurements on CBCT Images Related to Presurgical Implant Treatment Planning: A Systematic Review
,”
Clin. Oral Implants Res.
,
29
(
S16
), pp.
393
415
.10.1111/clr.13142
6.
Khazaei
,
S.
,
Mosleh
,
H.
,
Razavian
,
H.
, and
Vali
,
A.
,
2014
, “
Electronic Apex Locator: A Comprehensive Literature Review: Part II: Effect of Different Clinical and Technical Conditions on Electronic Apex Locator’s Accuracy
,”
Dent. Hypotheses
,
5
(
4
), p.
133
.10.4103/2155-8213.140588
7.
Williams
,
P. A.
, and
Saha
,
S.
,
1996
, “
The Electrical and Dielectric Properties of Human Bone Tissue and Their Relationship With Density and Bone Mineral Content
,”
Ann. Biomed. Eng.
,
24
(
2
), pp.
222
233
.10.1007/BF02667351
8.
Gabriel
,
C.
,
Gabriel
,
S.
, and
Corthout
,
E.
,
1996
, “
The Dielectric Properties of Biological Tissues—I: Literature Survey
,”
Phys. Med. Biol.
,
41
(
11
), pp.
2231
2249
.10.1088/0031-9155/41/11/001
9.
Nam
,
K. C.
,
Kim
,
S. C.
,
Lee
,
S. J.
,
Kim
,
Y. J.
,
Kim
,
N. G.
, and
Kim
,
D. W.
,
2002
, “
Root Canal Length Measurement in Teeth With Electrolyte Compensation
,”
Med. Biol. Eng. Comput.
,
40
(
2
), pp.
200
204
.10.1007/BF02348125
10.
Wismeijer
,
D.
,
Joda
,
T.
,
Flügge
,
T.
,
Fokas
,
G.
,
Tahmaseb
,
A.
,
Bechelli
,
D.
,
Bohner
,
L.
,
Bornstein
,
M.
,
Burgoyne
,
A.
,
Caram
,
S.
,
Carmichael
,
R.
,
Chen
,
C.-Y.
,
Coucke
,
W.
,
Derksen
,
W.
,
Donos
,
N.
,
El Kholy
,
K.
,
Evans
,
C.
,
Fehmer
,
V.
,
Fickl
,
S.
,
Fragola
,
G.
,
Gonzales
,
B. G.
,
Gholami
,
H.
,
Hashim
,
D.
,
Hui
,
Y.
,
Kökat
,
A.
,
Vazouras
,
K.
,
Kühl
,
S.
,
Lanis
,
A.
,
Leesungbok
,
R.
,
van der Meer
,
J.
,
Liu
,
Z.
,
Sato
,
T.
,
De Souza
,
A.
,
Scarfe
,
W. C.
,
Tosta
,
M.
,
van Zyl
,
P.
,
Vach
,
K.
,
Vaughn
,
V.
,
Vucetic
,
M.
,
Wang
,
P.
,
Wen
,
B.
, and
Wu
,
V.
,
2018
, “
Group 5 ITI Consensus Report: Digital Technologies
,”
Clin. Oral Implants Res.
,
29
(
S16
), pp.
436
442
.10.1111/clr.13309
11.
Hung
,
K.
,
Huang
,
W.
,
Wang
,
F.
, and
Wu
,
Y.
,
2016
, “
Real-Time Surgical Navigation System for the Placement of Zygomatic Implants With Severe Bone Deficiency
,”
Int. J. Oral Maxillofac. Implants
,
31
(
6
), pp.
1444
1449
.10.11607/jomi.5526
12.
Somogyi-Ganss
,
E.
,
Holmes
,
H. I.
, and
Jokstad
,
A.
,
2015
, “
Accuracy of a Novel Prototype Dynamic Computer-Assisted Surgery System
,”
Clin. Oral Implants Res.
,
26
(
8
), pp.
882
890
.10.1111/clr.12414
13.
Bessou
,
M.
,
Chassagne
,
B.
,
Caumes
,
J. P.
,
Pradère
,
C.
,
Maire
,
P.
,
Tondusson
,
M.
, and
Abraham
,
E.
,
2012
, “
Three-Dimensional Terahertz Computed Tomography of Human Bones
,”
Appl. Opt.
,
51
(
28
), p.
6738
.10.1364/AO.51.006738
14.
D’Haese
,
J.
,
Van De Velde
,
T.
,
Komiyama
,
A.
,
Hultin
,
M.
, and
De Bruyn
,
H.
,
2010
, “
Accuracy and Complications Using Computer-Designed stereolithographic Surgical Guides for Oral Rehabilitation by Means of Dental Implants: A Review of the Literature
,”
Clin. Implant Dent. Relat. Res.
,
14
(
3
), pp.
321
335
.10.1111/j.1708-8208.2010.00275.x
You do not currently have access to this content.