Abstract

To investigate the effective components and underlying mechanism of Paeoniae radix rubra (PRR) in treating sepsis-induced coagulopathy (SIC) on the basis of network pharmacology and molecular docking approaches. At present, no therapeutic agent has been approved for the treatment of SIC. Identifying drugs for SIC from Chinese medicine is an encouraging research direction. The predicted targets and effective components of PRR were identified by analysis of the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Bio-informatics databases were employed to identify the disease targets of SIC. These key targets were then uploaded to the STRING database to generate protein–protein interaction networks. The ORG package in rv4.1.2 software was applied for functional and pathway enrichment analyses of the key targets. Finally, discovery studio software was used to perform docking analyses of key targets and effective components. Nine chemically active components and 84 common targets associated with drugs and SIC were identified. Protein–protein interaction (PPI) network analysis identified several key targets. Further analysis identified enrichment in several signaling pathways; these changes could exert influence on a number of biological processes, including responses to xenobiotic stimuli, oxidative stress, molecules of bacterial origin, thus playing an anti-SIC pharmacological role. According to molecular docking results, these key targets had strong binding affinity to the active components. PRR can contribute to SIC by medicating core target genes (e.g., CASP3, PTGS2, TP53, AKT1, MMP9, TNF, JUN, IL6, and CXCL8), and regulating multiple key pathways (e.g., the lipid and atherosclerosis pathway).

References

1.
van der Poll
,
T.
,
2019
, “
Recombinant Human Soluble Thrombomodulin in Patients With Sepsis-Associated Coagulopathy: Another Negative Sepsis Trial?
,”
JAMA
,
321
(
20
), pp.
1978
1980
.10.1001/jama.2019.5792
2.
Giustozzi
,
M.
,
Ehrlinder
,
H.
,
Bongiovanni
,
D.
,
Borovac
,
J. A.
,
Guerreiro
,
R. A.
,
Gąsecka
,
A.
,
Papakonstantinou
,
P. E.
, and
Parker
,
W. A. E.
,
2021
, “
Coagulopathy and Sepsis: Pathophysiology, Clinical Manifestations and Treatment
,”
Blood Rev.
,
50
, p.
100864
.10.1016/j.blre.2021.100864
3.
Iba
,
T.
, and
Levy
,
J. H.
,
2020
, “
Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation
,”
Anesthesiology
,
132
(
5
), pp.
1238
1245
.10.1097/ALN.0000000000003122
4.
Levi
,
M.
,
Schultz
,
M.
, and
van der Poll
,
T.
,
2013
, “
Sepsis and Thrombosis
,”
Semin. Thromb. Hemostasis
,
39
(
05
), pp.
559
566
.10.1055/s-0033-1343894
5.
Patel
,
P.
,
Walborn
,
A.
,
Hoppensteadt
,
D.
,
Mosier
,
M.
,
Rondina
,
M. T.
, and
Fareed
,
J.
,
2016
, “
Biomarkers of Inflammation and Infection in Sepsis Associated Disseminated Intravascular Coagulation and Their Prognostic Role
,”
Blood
,
128
(
22
), p.
1412
.10.1182/blood.V128.22.1412.1412
6.
Iba
,
T.
,
Levy
,
J. H.
,
Raj
,
A.
, and
Warkentin
,
T. E.
,
2019
, “
Advance in the Management of Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation
,”
J. Clin. Med.
,
8
(
5
), p.
728
.10.3390/jcm8050728
7.
Evans
,
C. E.
,
2019
, “
Hypoxia and HIF Activation as a Possible Link Between Sepsis and Thrombosis
,”
Thromb. J.
,
17
(
1
), pp.
1
4
.10.1186/s12959-019-0205-9
8.
Huang
,
S. S. Y.
,
Rinchai
,
D.
,
Toufiq
,
M.
,
Kabeer
,
B. S. A.
,
Roelands
,
J.
,
Hendrickx
,
W.
,
Boughorbel
,
S.
,
Bedognetti
,
D.
,
Panhuys
,
N. V.
,
Chaussabel
,
D.
, and
Garand
,
M.
,
2022
, “
Transcriptomic Profile Investigations Highlight a Putative Role for NUDT16 in Sepsis
,”
J. Cell. Mol. Med.
,
26
(
5
), pp.
1714
1721
.10.1111/jcmm.17240
9.
Szilágyi
,
B.
,
Fejes
,
Z.
,
Póliska
,
S.
,
Pócsi
,
M.
,
Czimmerer
,
Z.
,
Patsalos
,
A.
,
Fenyvesi
,
F.
,
Rusznyák
,
Á.
,
Nagy
,
G.
,
Kerekes
,
G.
,
Berhés
,
M.
,
Szűcs
,
I.
,
Kunapuli
,
S. P.
,
Kappelmayer
,
J.
, and
Nagy
,
B.
,
2020
, “
Reduced miR-26b Expression in Megakaryocytes and Platelets Contributes to Elevated Level of Platelet Activation Status in Sepsis
,”
Int. J. Mol. Sci.
,
21
(
3
), p.
866
.10.3390/ijms21030866
10.
Liu
,
Y.
, and
Guo
,
Y.
,
2022
, “
Effect of Qing Ying Tang Combined With Western Medical Treatment on Inflammatory Response and Coagulation Function in Patients With Sepsis
,”
J. Guangzhou Univ. Chin. Med.
,
39
(
2
), pp.
265
270
.
11.
Wang
,
M.
,
Sheng
,
H. Z.
,
Wan
,
J.
,
Song
,
M. F.
, and
Wang
,
T.
,
2017
, “
Research Progress on the Correlation Between TCM Evidence Patterns and Inflammatory-Coagulation Biomarkers in Sepsis
,”
Chin. Acute Care Tradit. Chin. Med.
,
26
(
4
), pp.
659
662
.
12.
Xu
,
J. J.
,
Xu
,
F.
,
Wang
,
W.
,
Zhang
,
Y. F.
,
Hao
,
B. Q.
,
Shang
,
M. Y.
,
Liu
,
G. X.
,
Li
,
Y. L.
,
Yang
,
S. B.
,
Wang
,
X.
, and
Cai
,
S. Q.
,
2022
, “
Elucidation of the Mechanisms and Effective Substances of Paeoniae Radix Rubra Against Toxic Heat and Blood Stasis Syndrome With a Stage-Oriented Strategy
,”
Front. Pharmacol.
,
13
, p.
842839
.10.3389/fphar.2022.842839
13.
Huang
,
Y. Q.
,
Ma
,
X.
,
Wang
,
J.
,
Zhao
,
Y. L.
,
Wang
,
J. B.
,
Chen
,
Z.
,
Zhu
,
Y.
,
Shan
,
L. M.
,
Wei
,
S. Z.
,
Wang
,
J.
, and
Xiao
,
X. H.
,
2016
, “
Therapeutic Efficacy and Safety of Paeoniae Radix Rubra Formulae in Relieving Hyperbilirubinemia Induced by Viral Hepatitis: A Meta-Analysis
,”
Front. Pharmacol.
,
7
, p.
63
.10.3389/fphar.2016.00063
14.
Zhao
,
Y.
,
Li
,
X.
,
Chu
,
J.
,
Shao
,
Y.
,
Sun
,
Y.
,
Zhang
,
Y.
, and
Liu
,
Z.
,
2021
, “
Inhibitory Effect of Paeoniflorin on IgE-Dependent and IgE-Independent Mast Cell Degranulation In Vitro and Vivo
,”
Food Funct.
,
12
(
16
), pp.
7448
7468
.10.1039/D1FO01421H
15.
Lu
,
Z.
,
Ye
,
Y.
,
Liu
,
Y.
,
Yang
,
X.
,
Ding
,
Q.
,
Wang
,
Y.
,
Wu
,
Z.
,
Zhan
,
Y.
,
Gui
,
S.
,
Lin
,
B.
, and
Lin
,
B.
,
2021
, “
Aqueous Extract of Paeoniae Radix Rubra Prevents Deep Vein Thrombosis by Ameliorating Inflammation Through Inhibiting GSK3β Activity
,”
Phytomedicine
,
92
, p.
153767
.10.1016/j.phymed.2021.153767
16.
Lyu
,
M.
,
Yan
,
C. L.
,
Liu
,
H. X.
,
Wang
,
T. Y.
,
Shi
,
X. H.
,
Liu
,
J. P.
,
Orgah
,
J.
,
Fan
,
G. W.
,
Han
,
J. H.
,
Wang
,
X. Y.
, and
Zhu
,
Y.
,
2017
, “
Network Pharmacology Exploration Reveals Endothelial Inflammation as a Common Mechanism for Stroke and Coronary Artery Disease Treatment of Danhong Injection
,”
Sci. Rep.
,
7
(
1
), pp.
1
18
.10.1038/s41598-017-14692-3
17.
Wang
,
K.
,
Miao
,
X.
,
Kong
,
F.
,
Huang
,
S.
,
Mo
,
J.
,
Jin
,
C.
, and
Zheng
,
Y.
,
2021
, “
Integrating Network Pharmacology and Experimental Verification to Explore the Mechanism of Effect of Zuojin Pills in Pancreatic Cancer Treatment
,” Drug Des.,
Dev. Ther.
,
15
, pp.
3749
3764
.10.2147/DDDT.S323360
18.
Zhao
,
J.
,
Lin
,
F.
,
Liang
,
G.
,
Han
,
Y.
,
Xu
,
N.
,
Pan
,
J.
,
Luo
,
M.
,
Yang
,
W.
, and
Zeng
,
L.
,
2022
, “
Exploration of the Molecular Mechanism of Polygonati Rhizoma in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking
,”
Front. Endocrinol.
,
12
, p. 815891.10.3389/fendo.2021.815891
19.
Zhang
,
W.
,
Chen
,
Y.
,
Jiang
,
H.
,
Yang
,
J.
,
Wang
,
Q.
,
Du
,
Y.
, and
Xu
,
H.
,
2020
, “
Integrated Strategy for Accurately Screening Biomarkers Based on Metabolomics Coupled With Network Pharmacology
,”
Talanta
,
211
, p.
120710
.10.1016/j.talanta.2020.120710
20.
Ru
,
J.
,
Li
,
P.
,
Wang
,
J.
,
Zhou
,
W.
,
Li
,
B.
,
Huang
,
C.
,
Li
,
P.
,
Guo
,
Z.
,
Tao
,
W.
,
Yang
,
Y.
,
Xu
,
X.
,
Li
,
Y.
,
Wang
,
Y.
, and
Yang
,
L.
,
2014
, “
TCMSP: A Database of Systems Pharmacology for Drug Discovery From Herbal Medicines
,”
J. Cheminf.
,
6
(
1
), pp.
1
6
.10.1186/1758-2946-6-13
21.
Luo
,
Y.
,
Feng
,
Y.
,
Song
,
L.
,
He
,
G.-Q.
,
Li
,
S.
,
Bai
,
S.-S.
,
Huang
,
Y.-J.
,
Li
,
S.-Y.
,
Almutairi
,
M. M.
,
Shi
,
H.-L.
,
Wang
,
Q.
, and
Hong
,
M.
,
2019
, “
A Network Pharmacology-Based Study on the Anti-Hepatoma Effect of Radix Salviae Miltiorrhizae
,”
Chin. Med.
,
14
(
1
), pp.
1
17
.10.1186/s13020-019-0249-6
22.
Fishilevich
,
S.
,
Zimmerman
,
S.
,
Kohn
,
A.
,
Iny Stein
,
T.
,
Olender
,
T.
,
Kolker
,
E.
,
Safran
,
M.
, and
Lancet
,
D.
,
2016
, “
Genic Insights From Integrated Human Proteomics in GeneCards
,”
Database
,
2016
, p.
baw030
.10.1093/database/baw030
23.
Chu
,
M.
,
Gao
,
T.
,
Zhang
,
X.
,
Kang
,
W.
,
Feng
,
Y.
,
Cai
,
Z.
, and
Wu
,
P.
,
2022
, “
Elucidation of Potential Targets of San-Miao-San in the Treatment of Osteoarthritis Based on Network Pharmacology and Molecular Docking Analysis
,”
Evidence-Based Complementary Altern. Med.
,
2022
, pp.
1
13
10.1155/2022/7663212.
24.
Xie
,
J.
,
Wu
,
J.
,
Yang
,
S.
, and
Zhou
,
H.
,
2021
, “
Network Pharmacology-Based Study on the Mechanism of Aloe Vera for Treating Cancer
,”
Evidence-Based Complementary Altern. Med.
,
2021
, p.
6077698
.10.1155/2021/6077698
25.
Szklarczyk
,
D.
,
Gable
,
A. L.
,
Lyon
,
D.
,
Junge
,
A.
,
Wyder
,
S.
,
Huerta-Cepas
,
J.
,
Simonovic
,
M.
,
Doncheva
,
N. T.
,
Morris
,
J. H.
,
Bork
,
P.
,
Jensen
,
L. J.
, and
Mering
,
C. V.
,
2019
, “
STRING v11: Protein–Protein Association Networks With Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets
,”
Nucleic Acids Res.
,
47
(
D1
), pp.
D607
D613
.10.1093/nar/gky1131
26.
Liang
,
Y.
,
Liang
,
B.
,
Chen
,
W.
,
Wu
,
X. R.
,
Liu-Huo
,
W. S.
, and
Zhao
,
L. Z.
,
2021
, “
Potential Mechanism of Dingji Fumai Decoction Against Atrial Fibrillation Based on Network Pharmacology, Molecular Docking, and Experimental Verification Integration Strategy
,”
Front. Cardiovasc. Med.
,
8
, p.
712398
.10.3389/fcvm.2021.712398
27.
Zhang
,
Q.
,
Li
,
X.
,
Li
,
J.
,
Hu
,
Y.
,
Liu
,
J.
,
Wang
,
F.
,
Zhang
,
W.
, and
Chang
,
F.
,
2021
, “
Mechanism of Anti-Inflammatory and Antibacterial Effects of QingXiaoWuWei Decoction Based on Network Pharmacology, Molecular Docking and In Vitro Experiments
,”
Front. Pharmacol.
,
12
, p.
678685
.10.3389/fphar.2021.678685
28.
Du
,
H. X.
,
Zhu
,
J. Q.
,
Chen
,
J.
,
Zhou
,
H. F.
,
Yang
,
J. H.
, and
Wan
,
H. T.
,
2021
, “
Revealing the Therapeutic Targets and Molecular Mechanisms of Emodin-Treated Coronavirus Disease 2019 Via a Systematic Study of Network Pharmacology
,”
Aging (Albany NY)
,
13
(
11
), pp.
14571
14589
.10.18632/aging.203098
29.
Huo
,
B.
,
Song
,
Y.
,
Tan
,
B.
,
Li
,
J.
,
Zhang
,
J.
,
Zhang
,
F.
, and
Chang
,
L.
,
2022
, “
Research on the Mechanisms of Taraxerol for the Treatment of Gastric Cancer Effect Based on Network Pharmacology
,”
Int. J. Immunopathol. Pharmacol.
,
36
, pp. 1–14.10.1177/20587384211063962
30.
Yu
,
G.
, and
He
,
Q. Y.
,
2016
, “
ReactomePA: An R/Bioconductor Package for Reactome Pathway Analysis and Visualization
,”
Mol. BioSyst.
,
12
(
2
), pp.
477
479
.10.1039/C5MB00663E
31.
Yu
,
G.
,
Wang
,
L. G.
,
Han
,
Y.
, and
He
,
Q. Y.
,
2012
, “
clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters
,”
OMICS: J. Integr. Biol.
,
16
(
5
), pp.
284
287
.10.1089/omi.2011.0118
32.
Yu
,
G.
,
Wang
,
L. G.
,
Yan
,
G. R.
, and
He
,
Q. Y.
,
2015
, “
DOSE: An R/Bioconductor Package for Disease Ontology Semantic and Enrichment Analysis
,”
Bioinformatics
,
31
(
4
), pp.
608
609
.10.1093/bioinformatics/btu684
33.
Wang
,
Y.
,
Zou
,
J.
,
Jia
,
Y.
,
Zhang
,
X.
,
Wang
,
C.
,
Shi
,
Y.
,
Guo
,
D.
,
Wu
,
Z.
, and
Wang
,
F.
,
2021
, “
The Mechanism of Lavender Essential Oil in the Treatment of Acute Colitis Based on ‘Quantity–Effect’ Weight Coefficient Network Pharmacology
,”
Front. Pharmacol.
,
12
, p.
644140
.10.3389/fphar.2021.644140
34.
Deng
,
Y.
,
Ye
,
X.
,
Chen
,
Y.
,
Ren
,
H.
,
Xia
,
L.
,
Liu
,
Y.
,
Liu
,
M.
,
Liu
,
H.
,
Zhang
,
H.
,
Wang
,
K.
,
Zhang
,
J.
, and
Zhang
,
Z.
,
2021
, “
Chemical Characteristics of Platycodon Grandiflorum and Its Mechanism in Lung Cancer Treatment
,”
Front. Pharmacol.
,
11
, p.
609825
.10.3389/fphar.2020.609825
35.
Kim
,
S.
,
Chen
,
J.
,
Cheng
,
T.
,
Gindulyte
,
A.
,
He
,
J.
,
He
,
S.
,
Li
,
Q.
,
Shoemaker
,
B. A.
,
Thiessen
,
P. A.
,
Yu
,
B.
,
Zaslavsky
,
L.
,
Zhang
,
J.
, and
Bolton
,
E. E.
,
2019
, “
PubChem 2019 Update: Improved Access to Chemical Data
,”
Nucleic Acids Res.
,
47
(
D1
), pp.
D1102
D1109
.10.1093/nar/gky1033
36.
Zhang
,
M. M.
,
Wang
,
D.
,
Lu
,
F.
,
Zhao
,
R.
,
Ye
,
X.
,
He
,
L.
,
Li
,
A.
, and
Wu
,
C. J.
,
2021
, “
Identification of the Active Substances and Mechanisms of Ginger for the Treatment of Colon Cancer Based on Network Pharmacology and Molecular Docking
,”
BioData Min.
,
14
(
1
), pp.
1
16
.10.1186/s13040-020-00232-9
37.
Shou
,
X.
,
Wang
,
Y.
,
Zhang
,
X.
,
Zhang
,
Y.
,
Yang
,
Y.
,
Duan
,
C.
,
Yang
,
Y.
,
Jia
,
Q.
,
Yuan
,
G.
,
Shi
,
J.
,
Shi
,
S.
,
Cui
,
H.
, and
Hu
,
Y.
,
2022
, “
Network Pharmacology and Molecular Docking Analysis on Molecular Mechanism of Qingzi Zhitong Decoction in the Treatment of Ulcerative Colitis
,”
Front. Pharmacol.
,
13
, pp.
1
14
.10.3389/fphar.2022.727608
38.
McDonald
,
B.
,
Davis
,
R. P.
,
Kim
,
S. J.
,
Tse
,
M.
,
Esmon
,
C. T.
,
Kolaczkowska
,
E.
, and
Jenne
,
C. N.
,
2017
, “
Platelets and Neutrophil Extracellular Traps Collaborate to Promote Intravascular Coagulation During Sepsis in Mice
,”
Blood
,
129
(
10
), pp.
1357
1367
.10.1182/blood-2016-09-741298
39.
Lin
,
C. H.
,
Shih
,
C. H.
, and
Chen
,
B. C.
,
2015
, “
Thrombin-Induced IL-8/CXCL8 Release Is Mediated by CK2, MSK1, and NF-κB Pathways in Human Lung Epithelial Cells
,”
Eur. J. Pharmacol.
,
767
, pp.
135
143
.10.1016/j.ejphar.2015.10.018
40.
Wu
,
L. F.
,
Wang
,
Z. M.
,
He
,
K. Q.
,
Li
,
W. Y.
,
Jia
,
F.
,
Wen
,
W. Y.
,
Wang
,
X. G.
, and
Niu
,
L. Y.
,
2021
, “
Overview of Research on the Chemical Composition and Pharmacological Effects of Radix Paeoniae
,”
Chin. J. Exp. Formul.
,
27
(
18
), pp.
198
206
.
41.
Xu
,
H.
,
Chen
,
Z.
,
Shang
,
Q. H.
,
Gao
,
Z. Y.
,
Yu
,
C. A.
,
Shi
,
D. Z.
, and
Chen
,
K. J.
,
2019
, “
Asymmetric Dimethylarginine Predicts One-Year Recurrent Cardiovascular Events: Potential Biomarker of ‘Toxin Syndrome’ in Coronary Heart Disease
,”
Chin. J. Integr. Med.
,
25
(
5
), pp.
327
333
.10.1007/s11655-019-2701-y
42.
Zhao
,
Y.
,
Wan
,
H.
,
Yang
,
J.
,
Huang
,
Y.
,
He
,
Y.
,
Wan
,
H.
, and
Li
,
C.
,
2022
, “
Ultrasound-Assisted Preparation of ‘Ready-to-Use’ Extracts From Radix Paeoniae Rubra With Natural Deep Eutectic Solvents and Neuroprotectivity Evaluation of the Extracts Against Cerebral Ischemic/Reperfusion Injury
,”
Ultrason. Sonochem.
,
84
, p.
105968
.10.1016/j.ultsonch.2022.105968
43.
Ning
,
X.
,
Wang
,
Y.
,
Jing
,
M.
,
Sha
,
M.
,
Lv
,
M.
,
Gao
,
P.
,
Zhang
,
R.
,
Huang
,
X.
,
Feng
,
J.
, and
Jiang
,
Z.
,
2019
, “
Apoptotic Caspases Suppress Type I Interferon Production Via the Cleavage of cGAS, MAVS, and IRF3
,”
Mol. Cell
,
74
(
1
), pp.
19
31.e7
.10.1016/j.molcel.2019.02.013
44.
Dalli
,
J.
,
Chiang
,
N.
, and
Serhan
,
C. N.
,
2015
, “
Elucidation of Novel 13-Series Resolvins That Increase With Atorvastatin and Clear Infections
,”
Nat. Med.
,
21
(
9
), pp.
1071
1075
.10.1038/nm.3911
45.
Bergamaschi
,
D.
,
Samuels
,
Y.
,
O'Neil
,
N. J.
,
Trigiante
,
G.
,
Crook
,
T.
,
Hsieh
,
J.-K.
,
O'Connor
,
D. J.
,
Zhong
,
S.
,
Campargue
,
I.
,
Tomlinson
,
M. L.
,
Kuwabara
,
P. E.
, and
Lu
,
X.
,
2003
, “
iASPP Oncoprotein Is a Key Inhibitor of p53 Conserved From Worm to Human
,”
Nat. Genet.
,
33
(
2
), pp.
162
167
.10.1038/ng1070
46.
Miki
,
T.
,
Matsumoto
,
T.
,
Zhao
,
Z.
, and
Lee
,
C. C.
,
2013
, “
p53 Regulates Period2 Expression and the Circadian Clock
,”
Nat. Commun.
,
4
(
1
), pp.
1
11
.10.1038/ncomms3444
47.
Rönnstrand
,
L.
,
2004
, “
Signal Transduction Via the Stem Cell Factor Receptor/c-Kit
,”
Cell. Mol. Life Sci.
,
61
(
19–20
), pp.
2535
2548
.10.1007/s00018-004-4189-6
48.
Milburn
,
C. C.
,
Deak
,
M.
,
Kelly
,
S. M.
,
Price
,
N. C.
,
Alessi
,
D. R.
, and
Van Aalten
,
D. M.
,
2003
, “
Binding of Phosphatidylinositol 3, 4, 5-Trisphosphate to the Pleckstrin Homology Domain of Protein Kinase B Induces a Conformational Change
,”
Biochem. J.
,
375
(
3
), pp.
531
538
.10.1042/bj20031229
49.
Wang
,
C.
,
Zhang
,
Y.
,
Jiang
,
Z.
,
Bai
,
H.
, and
Du
,
Z.
,
2022
, “
miR-100 Alleviates the Inflammatory Damage and Apoptosis of H2O2-Induced Human Umbilical Vein Endothelial Cells Via Inactivation of Notch Signaling by Targeting MMP9
,”
Vascular
,
30
(
1
), pp.
151
161
.10.1177/1708538121989854
50.
Zheng
,
X.
,
Liu
,
H.
,
Ma
,
M.
,
Ji
,
J.
,
Zhu
,
F.
, and
Sun
,
L.
,
2021
, “
Anti-Thrombotic Activity of Phenolic Acids Obtained From Salvia Miltiorrhiza f. Alba in TNF-α-Stimulated Endothelial Cells Via the NF-κB/JNK/p38 MAPK Signaling Pathway
,”
Arch. Pharmacal Res.
,
44
(
4
), pp.
427
438
.10.1007/s12272-021-01325-7
51.
Davizon-Castillo
,
P.
,
McMahon
,
B.
,
Aguila
,
S.
,
Bark
,
D.
,
Ashworth
,
K.
,
Allawzi
,
A.
,
Campbell
,
R. A.
,
Montenont
,
E.
,
Nemkov
,
T.
,
D'Alessandro
,
A.
,
Clendenen
,
N.
,
Shih
,
L.
,
Sanders
,
N. A.
,
Higa
,
K.
,
Cox
,
A.
,
Padilla-Romo
,
Z.
,
Hernandez
,
G.
,
Wartchow
,
E.
,
Trahan
,
G. D.
,
Nozik-Grayck
,
E.
,
Jones
,
K.
,
Pietras
,
E. M.
,
DeGregori
,
J.
,
Rondina
,
M. T.
, and
Di Paola
,
J.
,
2019
, “
TNF-α–Driven Inflammation and Mitochondrial Dysfunction Define the Platelet Hyperreactivity of Aging
,”
Blood
,
134
(
9
), pp.
727
740
.10.1182/blood.2019000200
52.
Xia
,
L.
,
Xie
,
H.
,
Yu
,
Y.
,
Zhou
,
H.
,
Wang
,
T.
, and
Yan
,
J.
,
2016
, “
The Effects of NF-κB and c-Jun/AP-1 on the Expression of Prothrombotic and Proinflammatory Molecules Induced by Anti-β2GPI in Mouse
,”
PLoS One
,
11
(
2
), p.
e0147958
.10.1371/journal.pone.0147958
53.
Salemi
,
R.
,
Tomasello
,
B.
,
Gattuso
,
G.
,
Signorelli
,
S. S.
, and
Candido
,
S.
,
2022
, “
Overactivation of IL6 Cis–Signaling in Leukocytes Is an Inflammatory Hallmark of Deep Vein Thrombosis
,”
Mol. Med. Rep.
,
25
(
4
), pp.
1
7
.10.3892/mmr.2022.12652
54.
Liang
,
Q.
,
Yang
,
J.
,
He
,
J.
,
Chen
,
X.
,
Zhang
,
H.
,
Jia
,
M.
,
Liu
,
K.
,
Jia
,
C.
,
Pan
,
Y.
, and
Wei
,
J.
,
2020
, “
Stigmasterol Alleviates Cerebral Ischemia/Reperfusion Injury by Attenuating Inflammation and Improving Antioxidant Defenses in Rats
,”
Biosci. Rep.
,
40
(
4
), p.
BSR20192133
.10.1042/BSR20192133
55.
Liao
,
P. C.
,
Lai
,
M. H.
,
Hsu
,
K. P.
,
Kuo
,
Y. H.
,
Chen
,
J.
,
Tsai
,
M. C.
,
Li
,
C. X.
,
Yin
,
X. J.
,
Jeyashoke
,
N.
, and
Chao
,
L. K.-P.
,
2018
, “
Identification of β-Sitosterol as In Vitro Anti-Inflammatory Constituent in Moringa Oleifera
,”
J. Agric. Food Chem.
,
66
(
41
), pp.
10748
10759
.10.1021/acs.jafc.8b04555
56.
Koo
,
H. J.
,
Park
,
H. J.
,
Byeon
,
H. E.
,
Kwak
,
J. H.
,
Um
,
S. H.
,
Kwon
,
S. T.
,
Rhee
,
D. K.
, and
Pyo
,
S.
,
2014
, “
Chinese Yam Extracts Containing β‐Sitosterol and Ethyl Linoleate Protect Against Atherosclerosis in Apolipoprotein E‐Deficient Mice and Inhibit Muscular Expression of VCAM‐1 In Vitro
,”
J. Food Sci.
,
79
(
4
), pp.
H719
H729
.10.1111/1750-3841.12401
57.
Kushiyama
,
A.
,
Okubo
,
H.
,
Sakoda
,
H.
,
Kikuchi
,
T.
,
Fujishiro
,
M.
,
Sato
,
H.
,
Kushiyama
,
S.
,
Iwashita
,
M.
,
Nishimura
,
F.
,
Fukushima
,
T.
,
Nakatsu
,
Y.
,
Kamata
,
H.
,
Kawazu
,
S.
,
Higashi
,
Y.
,
Kurihara
,
H.
, and
Asano
,
T.
,
2012
, “
Xanthine Oxidoreductase Is Involved in Macrophage Foam Cell Formation and Atherosclerosis Development
,”
Arterioscler., Thromb., Vasc. Biol.
,
32
(
2
), pp.
291
298
.10.1161/ATVBAHA.111.234559
58.
Rohatgi
,
A.
,
2021
, “
Stressing the Endothelium to Assess Localized Inflammatory Potential and the Risk for Atherosclerotic Cardiovascular Disease
,”
Circulation
,
143
(
20
), pp.
1946
1948
.10.1161/CIRCULATIONAHA.121.053989
59.
Rohatgi
,
A.
,
Westerterp
,
M.
,
Von Eckardstein
,
A.
,
Remaley
,
A.
, and
Rye
,
K. A.
,
2021
, “
HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research
,”
Circulation
,
143
(
23
), pp.
2293
2309
.10.1161/CIRCULATIONAHA.120.044221
You do not currently have access to this content.