Abstract

Dynamic elastography attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a novel configuration, inspired by corneal elastography but generalizable to other applications, is studied. A polymer phantom layer is statically elongated via an in-plane biaxial normal stress while the phantom's response to transverse vibratory excitation is measured. We examine the interplay between biaxial prestress and waveguide effects in this plate-like tissue phantom. Finite static deformations caused by prestressing coupled with waveguide effects lead to results that are predicted by a novel coordinate transformation approach previously used to simplify reconstruction of anisotropic properties. Here, the approach estimates material viscoelastic properties independent of the nonzero prestress conditions without requiring advanced knowledge of those stress conditions.

References

1.
Larin
,
K. V.
, and
Sampson
,
D. D.
,
2017
, “
Optical Coherence elastography - OCT at Work in Tissue Biomechanics
,”
Biomed. Opt. Express
,
8
(
2
), pp.
1172
1202
.10.1364/BOE.8.001172
2.
Bernal
,
M.
,
Nenadic
,
I.
,
Urban
,
M. W.
, and
Greenleaf
,
J. F.
,
2011
, “
Material Property Estimation for Tubes and Arteries Using Ultrasound Radiation Force and Analysis of Propagating Modes
,”
J. Acoust. Soc. Am.
,
129
(
3
), pp.
1344
1354
.10.1121/1.3533735
3.
Roy
,
T.
, and
Guddati
,
M. N.
,
2021
, “
Shear Wave Dispersion Analysis of Incompressible Waveguides
,”
J. Acous. Soc. Am.
,
149
(
2
), pp.
972
982
.10.1121/10.0003430
4.
Roy
,
T.
,
Urban
,
M.
,
Xu
,
Y.
,
Greenleaf
,
J.
, and
Guddati
,
M. N.
,
2021
, “
Multimodal Guided Wave Inversion for Arterial Stiffness: Methodology and Validation in Phantoms
,”
Phys. Med. Biol.
,
66
(
11
), p.
115020
.10.1088/1361-6560/ac01b7
5.
Nenadic
,
I. Z.
,
Urban
,
M. W.
,
Mitchell
,
S. A.
, and
Greenleaf
,
J. F.
,
2011
, “
Lamb Wave Dispersion Ultrasound Vibrometry (LDUV) Method for Quantifying Mechanical Properties of Viscoelastic Solids
,”
Phys. Med. Biol.
,
56
(
7
), pp.
2245
2264
.10.1088/0031-9155/56/7/021
6.
Urban
,
M. W.
,
Qiang
,
B.
,
Song
,
P.
,
Nenadic
,
I. Z.
,
Chen
,
S.
, and
Greenleaf
,
J. F.
,
2016
, “
Investigation of the Effects of Myocardial Anisotropy for Shear Wave Elastography Using Impulsive Force and Harmonic Vibration
,”
Phys. Med. Biol.
,
61
(
1
), pp.
365
382
.10.1088/0031-9155/61/1/365
7.
Crutison
,
J.
,
Sun
,
M.
, and
Royston
,
T. J.
,
2022
, “
The Combined Importance of Finite Dimensions, Anisotropy, and Pre-Stress in Acoustoelastography
,”
J. Acoust. Soc. Am.
,
151
(
4
), pp.
2403
2413
.10.1121/10.0010110
8.
Sun
,
M. G.
,
Son
,
T.
,
Crutison
,
J.
,
Guaiquil
,
V.
,
Lin
,
S.
,
Nammari
,
L.
,
Klatt
,
D.
,
Yao
,
X.
,
Rosenblatt
,
M. I.
, and
Royston
,
T. J.
,
2022
, “
Optical Coherence Elastography for Assessing the Influence of Intraocular Pressure on Elastic Wave Dispersion in the Cornea
,”
J. Mech. Behav. Biomed Mater
,
128
, p.
105100
.10.1016/j.jmbbm.2022.105100
9.
Manduca
,
A.
,
Bayly
,
P. J.
,
Ehman
,
R. L.
,
Kolipaka
,
A.
,
Royston
,
T. J.
,
Sack
,
I.
,
Sinkus
,
R.
, and
Van Beers
,
B. E.
,
2021
, “
MR Elastography: Principles, Guidelines, and Terminology
,”
Magn. Reson. Med.
,
85
(
5
), pp.
2377
2390
.10.1002/mrm.28627
10.
Biot
,
M. A.
,
1965
,
Mechanics of Incremental Deformation
,
Wiley
,
New York
.
11.
Singh
,
I.
,
Madan
,
D. K.
, and
Gupta
,
M.
,
2010
, “
Propagation of Elastic Waves in Prestressed Media
,”
J. Appl. Math.
,
2010
, p.
e817680
.10.1155/2010/817680
12.
Gennisson
,
J. L.
,
Renier
,
M.
,
Catheline
,
S.
,
Barriere
,
C.
,
Berco
,
J.
,
Tanter
,
M.
, and
Fink
,
M.
,
2007
, “
Acoustoelasticity in Soft Solids: Assessment of the Nonlinear Shear Modulus With the Acoustic Radiation Force
,”
J. Acoust. Soc. Amer.
,
122
(
6
), pp.
3211
3219
.10.1121/1.2793605
13.
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Saccomandi
,
G.
,
2010
, “
Third- and Fourth-Order Constants of Incompressible Soft Solids and the Acousto-Elastic Effect
,”
J. Acoust. Soc. Amer.
,
127
(
5
), pp.
2759
2763
.10.1121/1.3372624
14.
Destrade
,
M.
, and
Ogden
,
R. W.
,
2010
, “
On the Third- and Fourth-Order Constants of Incompressible Isotropic Elasticity
,”
J. Acoust. Soc. Am.
,
128
(
6
), pp.
3334
3343
.10.1121/1.3505102
15.
Feng
,
Y.
,
Okamoto
,
R. J.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2016
, “
On the Accuracy and Fitting of Transversely Isotropic Material Models
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
554
566
.10.1016/j.jmbbm.2016.04.024
16.
Caenen
,
A.
,
Knight
,
A. E.
,
Rouze
,
N. C.
,
Bottenus
,
N. B.
,
Segers
,
P.
, and
Nightingale
,
K. R.
,
2020
, “
Analysis of Multiple Shear Wave Modes in a Nonlinear Soft Solid: Experiments and Finite Element Simulations With a Tilted Acoustic Radiation Force
,”
J. Mech. Behav. Biomed. Mater
,
107
, p.
103754
.10.1016/j.jmbbm.2020.103754
17.
Remenieras
,
J. P.
,
Bulot
,
M.
,
Gennisson
,
J. L.
,
Patat
,
F.
,
Destrade
,
M.
, and
Bacle
,
G.
,
2021
, “
Acousto-Elasticity of Transversely Isotropic Incompressible Soft Tissues: Characterization of Skeletal Striated Muscle
,”
Phys. Med. Biol.
,
66
(
14
), p.
145009
.10.1088/1361-6560/ac0f9b
18.
Steck
,
D.
,
Qu
,
J.
,
Kordmahale
,
S. B.
,
Tscharnuter
,
D.
,
Muliana
,
A.
, and
Kameoka
,
J.
,
2019
, “
Mechanical Responses of Ecoflex Silicone Rubber: Compressible and Incompressible Behaviors
,”
J. Appl. Polym. Sci.
,
136
(
5
), p.
47025
.10.1002/app.47025
19.
Ogden
,
R. W.
, and
Singh
,
B.
,
2011
, “
Propagation of Waves in an Incompressible Transversely Isotropic Elastic Solid With Initial Stress: Biot Revisited
,”
J. Mech. Mater. Struct.
,
6
(
1–4
), pp.
453
477
.10.2140/jomms.2011.6.453
20.
Destrade
,
M.
, and
Ogden
,
R. W.
,
2013
, “
On Stress-Dependent Elastic Moduli and Wave Speeds
,”
IMA J. Appl. Math.
,
78
(
5
), pp.
965
997
.10.1093/imamat/hxs003
21.
Meral
,
F. C.
,
Royston
,
T. J.
, and
Magin
,
R. L.
,
2011
, “
Rayleigh-Lamb Wave Propagation on a Fractional Order Viscoelastic Plate
,”
J. Acoust. Soc. Am.
,
129
(
2
), pp.
1036
1045
.10.1121/1.3531936
22.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
,
Ohio State University Press, Dover Publications Inc.
,
New York
.
23.
Guidetti
,
M.
, and
Royston
,
T. J.
,
2018
, “
Analytical Solution for Converging Elliptic Shear Wave in a Bounded Transverse Isotropic Viscoelastic Material With Nonhomogeneous Outer Boundary
,”
J. Acoust. Soc. Am.
,
144
(
4
), pp.
2312
2323
.10.1121/1.5064372
24.
Guidetti
,
M.
, and
Royston
,
T. J.
,
2019
, “
Analytical Solution for Diverging Elliptic Shear Wave in Bounded and Unbounded Transverse Isotropic Viscoelastic Material With Nonhomogeneous Inner Boundary
,”
J. Acoust. Soc. Am.
,
145
(
1
), pp.
EL59
EL65
.10.1121/1.5088028
25.
Guidetti
,
M.
,
Caratelli
,
D.
, and
Royston
,
T. J.
,
2019
, “
Converging Super-Elliptic Torsional Shear Waves in a Bounded Transverse Isotropic Viscoelastic Material With Nonhomogeneous Outer Boundary
,”
J. Acoust. Soc. Am.
,
146
(
5
), pp.
EL451
EL457
.10.1121/1.5134657
26.
Royston
,
T. J.
,
2021
, “
Analytical Solution Based on Spatial Distortion for a Time-Harmonic Green's Function in a Transverse Isotropic Viscoelastic Solid
,”
J. Acoust. Soc. Am.
,
149
(
4
), pp.
2283
2291
.10.1121/10.0004133
27.
Brinker
,
S.
,
Kearney
,
S. P.
,
Royston
,
T. J.
, and
Klatt
,
D.
,
2018
, “
Simultaneous Magnetic Resonance and Optical Elastography Acquisitions: Comparison of Displacement Images and Shear Modulus Estimations Using a Single Vibration Source
,”
J. Mech. Behav. Biomed Mater
,
84
, pp.
135
144
.10.1016/j.jmbbm.2018.05.010
28.
Yasar
,
T. K.
,
Royston
,
T. J.
, and
Magin
,
R. L.
,
2013
, “
Wideband MR Elastography for Viscoelasticity Model Identification
,”
Mag. Res. Med.
,
70
(
2
), pp.
479
489
.10.1002/mrm.24495
29.
Torres
,
J.
,
Faris
,
I. H.
,
Callejas
,
A.
,
Reyes-Ortega
,
F.
,
Melchor
,
J.
,
Gonzalez-Andrades
,
M.
, and
Rus
,
G.
,
2022
, “
Torsional Wave Elastography to Assess the Mechanical Properties of the Cornea
,”
Sci. Rep.
,
12
(
1
), p.
8354
.10.1038/s41598-022-12151-2
30.
Crutison
,
J.
, and
Royston
,
T. J.
,
2022
, “
The Design and Application of a Diffusion Tensor Informed Finite Element Model for Exploration of Uniaxially Prestressed Muscle Architecture in Magnetic Resonance Imaging
,”
Eng. Comput.
, epub.10.1007/s00366-022-01690-x
You do not currently have access to this content.