Abstract

Type I, or insulin-dependent diabetes mellitus, is a chronic disease in which insulin is not adequately produced by the pancreatic β-cells, which leads to a high glucose concentration. In practice, external insulin delivery is the only method to deal with this disease. To this end, a multi-objective optimal control for insulin delivery is introduced in this paper. Three conflicting objectives, including minimizing the risk of hypoglycemia and hyperglycemia, and reducing the amount of injected insulin, are considered. These objectives are minimized simultaneously while tuning the closed-loop system parameters that include the design details of the linear-quadratic regulator (LQR) and estimator speed of convergence. The lower and upper bounds of the LQR setup parameters are determined by Bryson’s rule taking into account the nominal glucose range (70160mg/dL) and maximum and minimum pump infusion rates (0.002415mU/min). The lower and upper bounds of the estimator convergence speed are chosen such that the estimator is faster than the fastest mode of the closed-loop system. For computer simulations, Bergman’s minimal model, which is one of the commonly used models, is employed to simulate glucose-insulin dynamics in Type-I diabetic patients. The optimization problem is solved by the nondominated sorting genetic algorithm (NSGA-II), one of the widely used algorithms in solving multi-objective optimization problems (MOPs). The optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained and analyzed. The results show that the MOP solution introduces many optimal options from which the decision-maker can choose to implement. Furthermore, under high initial glucose levels, parametric variations of Bergman’s model, and external disturbance, the optimal control performance are tested to show that the system can bring glucose levels quickly to the desired value regardless of high initial glucose concentrations, can efficiently work for different patients, and is robust against irregular snacks or meals.

References

1.
Asztalos
,
B. F.
,
Schaefer
,
E. J.
,
Sell
,
D. R.
,
Strauch
,
C. M.
,
Monnier
,
V. M.
,
Sun
,
J. K.
,
Keenan
,
H.
, et al.,
2011
, “
Protection From Retinopathy and Other Complications in Patients With Type 1 Diabetes of Extreme Duration
,”
Diabetes Care
, 34(1), pp.
968
974
.10.2337/dc10-1675
2.
Gruessner
,
A. C.
, and
Sutherland
,
D. E.
,
2005
, “
Pancreas Transplant Outcomes for United States (US) and Non-US Cases as Reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of June 2004
,”
Clin. Transplant.
,
19
(
4
), pp.
433
455
.10.1111/j.1399-0012.2005.00378.x
3.
Shirin
,
A.
,
Della Rossa
,
F.
,
Klickstein
,
I.
,
Russell
,
J.
, and
Sorrentino
,
F.
,
2019
, “
Optimal Regulation of Blood Glucose Level in Type I Diabetes Using Insulin and Glucagon
,”
PLoS One
,
14
(
3
), p.
e0213665
.10.1371/journal.pone.0213665
4.
Ali
,
S. F.
, and
Padhi
,
R.
,
2011
, “
Optimal Blood Glucose Regulation of Diabetic Patients Using Single Network Adaptive Critics
,”
Optimal Control Appl. Methods
,
32
(
2
), pp.
196
214
.10.1002/oca.920
5.
Parker
,
R. S.
,
Doyle
,
F. J.
, and
Peppas
,
N. A.
,
2001
, “
The Intravenous Route to Blood Glucose Control
,”
IEEE Eng. Med. Biol. Mag.
,
20
(
1
), pp.
65
73
.10.1109/51.897829
6.
Parrish
,
D. K.
, and
Ridgely
,
D. B.
,
1997
, “
Control of an Artificial Human Pancreas Using the SDRE Method
,”
Proceedings of the 1997 American Control Conference (Cat. No. 97CH36041)
, Vol.
2
,
IEEE, Albuquerque, NM, June 6
, pp.
1059
1060
.10.1109/ACC.1997.609690
7.
Naylor
,
J. S.
,
Hodel
,
A. S.
,
Morton
,
B.
, and
Schumacher
,
D.
,
1995
, “
Automatic Control Issues in the Development of an Artificial Pancreas
,”
Proceedings of 1995 American Control Conference, ACC’95
, Vol. 1,
IEEE
, Seattle, WA, June 21–23, pp.
771
775
.10.1109/ACC.1995.529355
8.
Kienitz
,
K. H.
, and
Yoneyama
,
T.
,
1993
, “
A Robust Controller for Insulin Pumps Based on h-Infinity Theory
,”
IEEE Trans. Biomed. Eng.
,
40
(
11
), pp.
1133
1137
.10.1109/10.245631
9.
Djouima
,
M.
,
Azar
,
A. T.
,
Drid
,
S.
, and
Mehdi
,
D.
,
2018
, “
Higher Order Sliding Mode Control for Blood Glucose Regulation of Type 1 Diabetic Patients
,”
Int. J. Syst. Dyn. Appl. (IJSDA)
,
7
(
1
), pp.
65
84
.https://www.igi-global.com/article/higher-order-slidingmode-control-for-blood-glucose-regulation-of-type-1-diabetic-patients/194981
10.
Vakili
,
S.
, and
ToosianShandiz
,
H.
,
2019
, “
Back-Stepping Sliding Mode Control Design for Glucose Regulation in Type 1 Diabetic Patients
,”
Int. J. Nonlinear Anal. Appl.
,
10
(
2
), pp.
167
176
.https://journals.semnan.ac.ir/article_4183_deb6e22cbb70f6fcb52a7f2a249b7f42.pdf
11.
Al-Fandi
,
M.
,
Jaradat
,
M. A. K.
, and
Sardahi
,
Y.
,
2011
, “
Optimal pi-Fuzzy Logic Controller of Glucose Concentration Using Genetic Algorithm
,”
Int. J. Knowl.-Based Intell. Eng. Syst.
,
15
(
2
), pp.
99
117
.10.3233/KES-2010-0215
12.
Kosse
,
C.
,
Gonzalez
,
A.
, and
Burdakov
,
D.
,
2015
, “
Predictive Models of Glucose Control: Roles for Glucose-Sensing Neurones
,”
Acta Physiol.
,
213
(
1
), pp.
7
18
.10.1111/apha.12360
13.
Al-Fandi
,
M.
,
Jaradat
,
M. A.
, and
Sardahi
,
Y.
,
2012
, “
Optimal PID-Fuzzy Logic Controller for Type 1 Diabetic Patients
,”
8th IEEE International Symposium on Mechatronics and Its Applications
,
IEEE, Sharjah, UAE
, Apr. 10–12, pp.
1
7
.10.1109/ISMA.2012.6215171
14.
Sardahi
,
Y.
, and
Boker
,
A.
,
2018
, “
Multi-Objective Optimal Design of Four-Parameter Pid Controls
,”
ASME
Paper No. GT2009-60335.10.1115/GT2009-60335
15.
Carson
,
E. R.
, and
Cobelli
,
C.
,
2001
,
Modelling Methodology for Physiology Nad Medicine, Academic Press
,
San Diego
.
16.
Bolie
,
V. W.
,
1961
, “
Coefficients of Normal Blood Glucose Regulation
,”
J. Appl. Physiol.
,
16
(
5
), pp.
783
788
.10.1152/jappl.1961.16.5.783
17.
Sturis
,
J.
,
Polonsky
,
K. S.
,
Mosekilde
,
E.
, and
Cauter
,
E. V.
,
1991
, “
Computer Model for Mechanisms Underlying Ultradian Oscillations of Insulin and Glucose
,”
Am. J. Physiol.-Endocrinol. Metab.
,
260
(
5
), pp.
E801
E809
.10.1152/ajpendo.1991.260.5.E801
18.
Hovorka
,
R.
,
Canonico
,
V.
,
Chassin
,
L. J.
,
Haueter
,
U.
,
Massi-Benedetti
,
M.
,
Federici
,
M. O.
,
Pieber
,
T. R.
,
Schaller
,
H. C.
,
Schaupp
,
L.
,
Vering
,
T.
, and
Wilinska
,
M. E.
,
2004
, “
Nonlinear Model Predictive Control of Glucose Concentration in Subjects With Type 1 Diabetes
,”
Physiol. Meas.
,
25
(
4
), pp.
905
920
.10.1088/0967-3334/25/4/010
19.
Bergman
,
R. N.
,
Ider
,
Y. Z.
,
Bowden
,
C. R.
, and
Cobelli
,
C.
,
1979
, “
Quantitative Estimation of Insulin Sensitivity
,”
Am. J. Physiol.-Endocrinol. Metab.
,
236
(
6
), p.
E667
.10.1152/ajpendo.1979.236.6.E667
20.
Bergman
,
R. N.
,
Phillips
,
L. S.
, and
Cobelli
,
C.
,
1981
, “
Physiologic Evaluation of Factors Controlling Glucose Tolerance in Man: Measurement of Insulin Sensitivity and Beta-Cell Glucose Sensitivity From the Response to Intravenous Glucose
,”
J. Clin. Invest.
,
68
(
6
), pp.
1456
1467
.10.1172/JCI110398
21.
Diamanti
,
A.
,
2016
, “
How to Address Uncertainty in Biomedical Systems
,”
Ph.D. thesis
, Doctoral dissertation,
Imperial College London, London, UK
.10.13140/RG.2.2.22720.53762
22.
Ndoye
,
I.
,
Voos
,
H.
,
Darouach
,
M.
,
Schneider
,
J. G.
,
Knauf
,
N.
, and
Static
,
H.
,
2013
, “
Output Feedback Control for a Fractional-Order Glucose-Insulin System
,”
IFAC Proc. Vol.
,
46
(
1
), pp.
266
271
.10.3182/20130204-3-FR-4032.00185
23.
Kaveh
,
P.
, and
Shtessel
,
Y. B.
,
2008
, “
Blood Glucose Regulation Using Higher-Order Sliding Mode Control
,”
Int. J. Robust Nonlinear Control
,
18
(
4–5
), pp.
557
569
.10.1002/rnc.1223
24.
Hernández
,
A. G. G.
,
Fridman
,
L.
,
Levant
,
A.
,
Shtessel
,
Y.
,
Leder
,
R.
,
Monsalve
,
C. R.
, and
Andrade
,
S. I.
,
2013
, “
High-Order Sliding-Mode Control for Blood Glucose: Practical Relative Degree Approach
,”
Control Eng. Pract.
,
21
(
5
), pp.
747
758
.10.1016/j.conengprac.2012.11.015
25.
Pareto
,
V.
, and
Schwier
,
A. S.
,
1927
,
Manual of Political Economy Tr. by Ann S. Schwier
,
Macmillan
,
London, UK
.
26.
Hernández
,
C.
,
Naranjani
,
Y.
,
Sardahi
,
Y.
,
Liang
,
W.
,
Schütze
,
O.
, and
Sun
,
J.-Q.
,
2013
, “
Simple Cell Mapping Method for Multi-Objective Optimal Feedback Control Design
,”
Int. J. Dyn. Control
,
1
(
3
), pp.
231
238
.10.1007/s40435-013-0021-1
27.
Tamiz
,
M.
,
Jones
,
D.
, and
Romero
,
C.
,
1998
, “
Goal Programming for Decision Making: An Overview of the Current State-of-the-Art
,”
Eur. J. Oper. Res.
,
111
(
3
), pp.
569
581
.10.1016/S0377-2217(97)00317-2
28.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.10.1007/s00158-003-0368-6
29.
Tian
,
Y.
,
Cheng
,
R.
,
Zhang
,
X.
, and
Jin
,
Y.
,
2017
, “
Platemo: A Matlab Platform for Evolutionary Multi-Objective Optimization [Educational Forum]
,”
IEEE Comput. Intell. Mag.
,
12
(
4
), pp.
73
87
.10.1109/MCI.2017.2742868
30.
Yusoff
,
Y.
,
Ngadiman
,
M. S.
, and
Zain
,
A. M.
,
2011
, “
Overview of Nsga-ii for Optimizing Machining Process Parameters
,”
Procedia Eng.
,
15
, pp.
3978
3983
.10.1016/j.proeng.2011.08.745
31.
Yang
,
X.-S.
,
2020
,
Nature-Inspired Optimization Algorithms
,
Academic Press
, Cambridge, MA.
32.
Williams II, R. L., and Lawrence, D. A
.,
2007
,
Linear State-Space Control Systems
,
Wiley, Hoboken, NJ
.http://gr.xjtu.edu.cn/c/document_library/get_file?p_l_id=21426&folderId=29637&name=DLFE-3275.pdf
33.
Doodnath
,
A.
,
Kong
,
A.
, and
Sastry
,
M. K. S.
,
2009
, “
Optimal Linear Control of Blood Glucose
,”
WRI World Congress on Computer Science and Information Engineering
,
IEEE, Vol. 5
, Los Angeles, CA, Mar. 31–Apr. 2, pp.
377
381
.10.1109/CSIE.2009.380
34.
Ben Ali
,
J.
,
Hamdi
,
T.
,
Fnaiech
,
N.
,
Di Costanzo
,
V.
,
Fnaiech
,
F.
, and
Ginoux
,
J.-M.
,
2018
, “
Continuous Blood Glucose Level Prediction of Type 1 Diabetes Based on Artificial Neural Network
,”
Biocybern. Biomed. Eng.
,
38
(
4
), pp.
828
840
.10.1016/j.bbe.2018.06.005
35.
Nath
,
A.
,
Dey
,
R.
, and
Balas
,
V. E.
,
2016
, “
Closed Loop Blood Glucose Regulation of Type 1 Diabetic Patient Using Takagi-Sugeno Fuzzy Logic Control
,”
International Workshop Soft Computing Applications
,
Springer, Arad, Romania
, Aug. 24–26, pp.
286
296
.10.1007/978-3-319-62524-9_23
You do not currently have access to this content.