Abstract

Viscoelasticity of the spinal nerve roots may play a significant role in predicting nerve root damage caused by overall spinal motion. However, only a few studies have investigated the complex mechanical behavior of this tissue. The current study presents a theoretical protocol for predicting mechanical responses of soft biological materials, and this method was used to a uniaxially stretched neural fiber bundle isolated from porcine spinal nerve roots with various loading configurations. Stress relaxation tests were performed to systematically determine a set of parameters dictating the stress decaying process, i.e., a set of relaxation moduli and the corresponding time constants. Based on the obtained experimental and numerical test data, it was confirmed that the proposed method is effective even for the prediction of mechanical response to a cyclic stretch immediately after the ramp-hold test. In addition, an elastic response, i.e., a stress–strain relationship under a high-rate loading regime, was determined analytically. The results demonstrated that instantaneous mechanical responses of neural fiber bundles can be stiffened against very rapid stretch (>10 s−1); however, the fibers are relatively insensitive to moderate loading rates (<1 s−1). The ultimate tensile strength was estimated to be approximately 8 MPa at the structural failure strain (15%). This information will enable the computational assessment of traumatic nerve root injuries sustained during traffic accidents and contact sports.

References

1.
Harrison
,
D. E.
,
Cailliet
,
R.
,
Harrison
,
D. D.
,
Troyanovich
,
S. J.
, and
Harrison
,
S. O.
,
1999
, “
A Review of Biomechanics of the Central Nervous System—Part II: Spinal Cord Strains From Postural Loads
,”
J. Manipulative Physiol. Ther.
,
22
(
5
), pp.
322
332
.10.1016/S0161-4754(99)70065-5
2.
Beel
,
J. A.
,
Stodieck
,
L. S.
, and
Luttges
,
M. W.
,
1986
, “
Structural Properties of Spinal Nerve Roots: Biomechanics
,”
Exp. Neurol.
,
91
(
1
), pp.
30
40
.10.1016/0014-4886(86)90023-3
3.
Stodieck
,
L. S.
,
Beel
,
J. A.
, and
Luttges
,
M. W.
,
1986
, “
Structural Properties of Spinal Nerve Roots: Protein Composition
,”
Exp. Neurol.
,
91
(
1
), pp.
41
51
.10.1016/0014-4886(86)90024-5
4.
Vander
,
A.
,
Sherman
,
J.
, and
Luciano
,
D.
,
1998
,
Human Physiology: The Mechanisms of Body Function
, 7th ed.,
McGraw-Hill
,
Boston, MA
.
5.
Berthelot
,
J.-M.
,
Laredo
,
J.-D.
,
Darrieutort-Laffite
,
C.
, and
Maugars
,
Y.
,
2018
, “
Stretching of Roots Contributes to the Pathophysiology of Radiculopathies
,”
Jt. Bone Spine
,
85
(
1
), pp.
41
45
.10.1016/j.jbspin.2017.01.004
6.
Morki
,
B.
,
2013
, “
Spontaneous Low Pressure, Low CSF Volume Headaches: Spontaneous CSF Leaks
,”
Headache
,
53
(
7
), pp.
1034
1053
.10.1111/head.12149
7.
Kunihiro
,
T.
, and
Soma
,
K.
,
2014
, “
Dizziness and Other Symptoms of Cerebrospinal Fluid Leakage and Insights Into Their Pathogenesis
,”
Equilib. Res.
,
73
(
3
), pp.
174
186
(in Japanese).10.3757/jser.73.174
8.
Tamura
,
A.
, and
Sakaya
,
M.
,
2018
, “
Dynamic Tensile Behavior of Fiber Bundles Isolated From Spinal Nerve Roots: Effects of Anatomical Site and Loading Rate on Mechanical Strength
,”
ASME J. Med. Diagn.
,
1
(
3
), p.
031001
.10.1115/1.4039560
9.
Tamura
,
A.
,
Hongu
,
J.
, and
Matsumoto
,
T.
,
2019
, “
Theoretical Elastic Tensile Behavior of Muscle Fiber Bundles in Traumatic Loading Events
,”
Clin. Biomech.
,
69
, pp.
184
190
.10.1016/j.clinbiomech.2019.07.021
10.
Hongu
,
J.
, and
Tamura
,
A.
,
2022
, “
Identification of Relaxation Modulus of Soft Biological Materials Using Low-Pass Filter and Low-Order Model
,”
Trans. JSME
,
88
(
909
), p. 22–00041 (Japanese).
11.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
,
2000
, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
15
22
.10.1115/1.429623
12.
Tamura
,
A.
,
Hayashi
,
S.
,
Watanabe
,
I.
,
Nagayama
,
K.
, and
Matsumoto
,
T.
,
2007
, “
Mechanical Characterization of Brain Tissue in High-Rate Compression
,”
J. Biomech. Sci. Eng.
,
2
(
3
), pp.
115
126
.10.1299/jbse.2.115
13.
Tamura
,
A.
,
Hayashi
,
S.
,
Nagayama
,
K.
, and
Matsumoto
,
T.
,
2008
, “
Mechanical Characterization of Brain Tissue in High-Rate Extension
,”
J. Biomech. Sci. Eng.
,
3
(
2
), pp.
263
274
.10.1299/jbse.3.263
14.
Myers
,
B. S.
,
McElhaney
,
J. H.
, and
Doherty
,
B. J.
,
1991
, “
The Viscoelastic Responses of the Human Cervical Spine in Torsion: Experimental Limitations of Quasi-Linear Theory, and a Method for Reducing These Effects
,”
J. Biomech.
,
24
(
9
), pp.
811
817
.10.1016/0021-9290(91)90306-8
15.
Bain
,
A. C.
, and
Meaney
,
D. F.
,
2000
, “
Tissue-Level Thresholds for Axonal Damage in an Experimental Model of Central Nervous System White Matter Injury
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
615
622
.10.1115/1.1324667
16.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
, 2nd ed.,
Springer-Verlag
,
New York
.
17.
Meyer
,
G. A.
,
McCulloch
,
A. D.
, and
Lieber
,
R. L.
,
2011
, “
A Nonlinear Model of Passive Muscle Viscosity
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
091007
.10.1115/1.4004993
18.
Troyer
,
K. L.
,
Estep
,
D. J.
, and
Puttlitz
,
C. M.
,
2012
, “
Viscoelastic Effects During Loading Play an Integral Role in Soft Tissue Mechanics
,”
Acta Biomater.
,
8
(
1
), pp.
234
243
.10.1016/j.actbio.2011.07.035
19.
Troyer
,
K. L.
, and
Puttlitz
,
C. M.
,
2012
, “
Nonlinear Viscoelasticity Plays an Essential Role in the Functional Behavior of Spinal Ligaments
,”
J. Biomech.
,
45
(
4
), pp.
684
691
.10.1016/j.jbiomech.2011.12.009
20.
Screen
,
H. R. C.
,
Toorani
,
S.
, and
Shelton
,
J. C.
,
2013
, “
Microstructural Stress Relaxation Mechanics in Functionally Different Tendons
,”
Med. Eng. Phys.
,
35
(
1
), pp.
96
102
.10.1016/j.medengphy.2012.04.004
21.
Aryeetey
,
O. J.
,
Frank
,
M.
,
Lorenz
,
A.
,
Estermann
,
S.-J.
,
Reisinger
,
A. G.
, and
Pahr
,
D. H.
,
2022
, “
A Parameter Reduced Adaptive Quasi-Linear Viscoelastic Model for Soft Biological Tissue in Uniaxial Tension
,”
J. Mech. Behav. Biomed. Mater.
,
126
, p.
104999
.10.1016/j.jmbbm.2021.104999
You do not currently have access to this content.