Abstract

Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a configuration, inspired by muscle elastography but generalizable to other applications, is analytically and experimentally studied. A hyperelastic polymer phantom cylinder is statically elongated in the axial direction while its response to transverse-polarized vibratory excitation is measured. We examine the interplay between uniaxial prestress and waveguide effects in this muscle-like tissue phantom using computational finite element simulations and magnetic resonance elastography measurements. Finite deformations caused by prestress coupled with waveguide effects lead to results that are predicted by a coordinate transformation approach that has been previously used to simplify reconstruction of anisotropic properties using elastography. Here, the approach estimates material viscoelastic properties that are independent of the nonhomogeneous prestress conditions without requiring advanced knowledge of those stress conditions.

References

1.
Larin
,
K. V.
, and
Sampson
,
D. D.
,
2017
, “
Optical Coherence Elastography–OCT at Work in Tissue Biomechanics
,”
Biomed. Opt. Express
,
8
(
2
), pp.
1172
1202
.10.1364/BOE.8.001172
2.
Bernal
,
M.
,
Nenadic
,
I.
,
Urban
,
M. W.
, and
Greenleaf
,
J. F.
,
2011
, “
Material Property Estimation for Tubes and Arteries Using Ultrasound Radiation Force and Analysis of Propagating Modes
,”
J. Acoust. Soc. Am.
,
129
(
3
), pp.
1344
1354
.10.1121/1.3533735
3.
Roy
,
T.
, and
Guddati
,
M. N.
,
2021
, “
Shear Wave Dispersion Analysis of Incompressible Waveguides
,”
J. Acous. Soc. Am.
,
149
(
2
), pp.
972
982
.10.1121/10.0003430
4.
Roy
,
T.
,
Urban
,
M.
,
Xu
,
Y.
,
Greenleaf
,
J.
, and
Guddati
,
M. N.
,
2021
, “
Multimodal Guided Wave Inversion for Arterial Stiffness: Methodology and Validation in Phantoms
,”
Phys. Med. Biol.
,
66
(
11
), p.
115020
.10.1088/1361-6560/ac01b7
5.
Urban
,
M. W.
,
Qiang
,
B.
,
Song
,
P.
,
Nenadic
,
I. Z.
,
Chen
,
S.
, and
Greenleaf
,
J. F.
,
2016
, “
Investigation of the Effects of Myocardial Anisotropy for Shear Wave Elastography Using Impulsive Force and Harmonic Vibration
,”
Phys. Med. Biol.
,
61
(
1
), pp.
365
382
.10.1088/0031-9155/61/1/365
6.
Crutison
,
J.
,
Sun
,
M.
, and
Royston
,
T. J.
,
2022
, “
The Combined Importance of Finite Dimensions, Anisotropy, and Pre-Stress in Acoustoelastography
,”
J. Acoust. Soc. Am.
,
151
(
4
), pp.
2403
2413
.10.1121/10.0010110
7.
Manduca
,
A.
,
Bayly
,
P. J.
,
Ehman
,
R. L.
,
Kolipaka
,
A.
,
Royston
,
T. J.
,
Sack
,
I.
,
Sinkus
,
R.
, and
Van Beers
,
B. E.
,
2021
, “
MR Elastography: Principles, Guidelines, and Terminology
,”
Magn. Reson. Med.
,
85
(
5
), pp.
2377
2390
.10.1002/mrm.28627
8.
Biot
,
M. A.
,
1965
,
Mechanics of Incremental Deformation
,
Wiley
,
New York
.
9.
Singh
,
I.
,
Madan
,
D. K.
, and
Gupta
,
M.
,
2010
, “
Propagation of Elastic Waves in Prestressed Media
,”
J. Appl. Math.
,
2010
, p.
e817680
.10.1155/2010/817680
10.
Gennisson
,
J. L.
,
Renier
,
M.
,
Catheline
,
S.
,
Barriere
,
C.
,
Berco
,
J.
,
Tanter
,
M.
, and
Fink
,
M.
,
2007
, “
Acoustoelasticity in Soft Solids: Assessment of the Nonlinear Shear Modulus With the Acoustic Radiation Force
,”
J. Acoust. Soc. Am.
,
122
(
6
), pp.
3211
3219
.10.1121/1.2793605
11.
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Saccomandi
,
G.
,
2010
, “
Third- and Fourth-Order Constants of Incompressible Soft Solids and the Acousto-Elastic Effect
,”
J. Acoust. Soc. Am.
,
127
(
5
), pp.
2759
2763
.10.1121/1.3372624
12.
Destrade
,
M.
, and
Ogden
,
R. W.
,
2010
, “
On the Third- and Fourth-Order Constants of Incompressible Isotropic Elasticity
,”
J. Acoust. Soc. Am.
,
128
(
6
), pp.
3334
3343
.10.1121/1.3505102
13.
Feng
,
Y.
,
Okamoto
,
R. J.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2016
, “
On the Accuracy and Fitting of Transversely Isotropic Material Models
,”
J. Mech. Behav. Biomed Mater.
,
61
, pp.
554
566
.10.1016/j.jmbbm.2016.04.024
14.
Caenen
,
A.
,
Knight
,
A. E.
,
Rouze
,
N. C.
,
Bottenus
,
N. B.
,
Segers
,
P.
, and
Nightingale
,
K. R.
,
2020
, “
Analysis of Multiple Shear Wave Modes in a Nonlinear Soft Solid: Experiments and Finite Element Simulations With a Tilted Acoustic Radiation Force
,”
J. Mech. Behav. Biomed. Mater.
,
107
, p.
103754
.10.1016/j.jmbbm.2020.103754
15.
Remenieras
,
J. P.
,
Bulot
,
M.
,
Gennisson
,
J. L.
,
Patat
,
F.
,
Destrade
,
M.
, and
Bacle
,
G.
,
2021
, “
Acousto-Elasticity of Transversely Isotropic Incompressible Soft Tissues: Characterization of Skeletal Striated Muscle
,”
Phys. Med. Biol.
,
66
(
14
), p.
145009
.10.1088/1361-6560/ac0f9b
16.
Steck
,
D.
,
Qu
,
J.
,
Kordmahale
,
S. B.
,
Tscharnuter
,
D.
,
Muliana
,
A.
, and
Kameoka
,
J.
,
2019
, “
Mechanical Responses of Ecoflex Silicone Rubber: Compressible and Incompressible Behaviors
,”
J. Appl. Polym. Sci.
,
136
(
5
), p.
47025
.10.1002/app.47025
17.
Ogden
,
R. W.
, and
Singh
,
B.
,
2011
, “
Propagation of Waves in an Incompressible Transversely Isotropic Elastic Solid With Initial Stress: Biot Revisited
,”
J. Mech. Mater. Struct.
,
6
(
1–4
), pp.
453
477
.10.2140/jomms.2011.6.453
18.
Destrade
,
M.
, and
Ogden
,
R. W.
,
2013
, “
On Stress-Dependent Elastic Moduli and Wave Speeds
,”
IMA J. Appl. Math.
,
78
(
5
), pp.
965
997
.10.1093/imamat/hxs003
19.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
,
Ohio State University Press, Dover Publications Inc.
,
New York
.
20.
Guidetti
,
M.
, and
Royston
,
T. J.
,
2018
, “
Analytical Solution for Converging Elliptic Shear Wave in a Bounded Transverse Isotropic Viscoelastic Material With Nonhomogeneous Outer Boundary
,”
J. Acoust. Soc. Am.
,
144
(
4
), pp.
2312
2323
.10.1121/1.5064372
21.
Guidetti
,
M.
, and
Royston
,
T. J.
,
2019
, “
Analytical Solution for Diverging Elliptic Shear Wave in Bounded and Unbounded Transverse Isotropic Viscoelastic Material With Nonhomogeneous Inner Boundary
,”
J. Acoust. Soc. Am.
,
145
(
1
), pp.
EL59
EL65
.10.1121/1.5088028
22.
Guidetti
,
M.
,
Caratelli
,
D.
, and
Royston
,
T. J.
,
2019
, “
Converging Super-Elliptic Torsional Shear Waves in a Bounded Transverse Isotropic Viscoelastic Material With Nonhomogeneous Outer Boundary
,”
J. Acoust. Soc. Am.
,
146
(
5
), pp.
EL451
EL457
.10.1121/1.5134657
23.
Royston
,
T. J.
,
2021
, “
Analytical Solution Based on Spatial Distortion for a Time-Harmonic Green's Function in a Transverse Isotropic Viscoelastic Solid
,”
J. Acoust. Soc. Am.
,
149
(
4
), pp.
2283
2291
.10.1121/10.0004133
24.
Klatt
,
D.
,
Yasar
,
T. K.
,
Royston
,
T. J.
, and
Magin
,
R. L.
,
2013
, “
Sample Interval Modulation for the Simultaneous Acquisition of Displacement Vector Data in Magnetic Resonance Elastography: Theory and Application
,”
Phys. Med. Biol.
,
58
(
24
), pp.
8663
8675
.10.1088/0031-9155/58/24/8663
25.
Crutison
,
J.
, and
Royston
,
T. J.
,
2022
, “
The Design and Application of a Diffusion Tensor Informed Finite Element Model for Exploration of Uniaxially Prestressed Muscle Architecture in Magnetic Resonance Imaging
,”
Eng. Comput.
,
38
(
5
), pp.
3893
3908
.10.1007/s00366-022-01690-x
You do not currently have access to this content.