Abstract

Surface electromyography signal (sEMG) is the bio-electric signal accompanied by muscle contraction. For master–slave manipulation scenario such as patients with prosthetic hands, their upper limb sEMG signals can be collected and corresponded to the patient's gesture intention. Therefore, using a slave manipulator that integrated with the sEMG signal recognition module, the master side could control it to make gestures and meet their needs of daily life. In this paper, gesture recognition is carried out based on sEMG and deep learning, and the master–slave control of manipulator is realized. According to the results of training, the network model with the highest accuracy of gesture classification and recognition can be obtained. Then, combined with the integrated manipulator, the control signal of the manipulator corresponding to the gesture is sent to the control module of the manipulator. In the end, a prototype system is built and the master–slave control of the manipulator using the sEMG signal is realized.

References

1.
Arendt-Nielsen
,
L.
, and
Zwarts
,
M.
,
1989
, “
Measurement of Muscle Fiber Conduction Velocity in Humans: Techniques and Applications
,”
J. Clin. Neurophysiol.
,
6
(
2
), pp.
173
190
.10.1097/00004691-198904000-00004
2.
Zhu
,
X.
, and
Zhang
,
Y.
,
2012
, “
Decomposition of Multichannel Surface EMG Signals Based on Firing Pattern Checking
,”
ASME J. Med. Devices
,
6
(
1
), p.
017529
.10.1115/1.4026707
3.
Sri-Iesaranusorn
,
P.
,
Chaiyaroj
,
A.
,
Buekban
,
C.
,
Dumnin
,
S.
,
Pongthornseri
,
R.
,
Thanawattano
,
C.
,
Surangsrirat
,
D.
, et al.,
2021
, “
Classification of 41 Hand and Wrist Movements Via Surface Electromyogram Using Deep Neural Network
,”
Front. Bioeng. Biotechnol.
,
9
, p.
548357
.10.3389/fbioe.2021.548357
4.
Zhou
,
X.
,
Qi
,
W.
,
Ovur
,
S. E.
,
Zhang
,
L.
,
Hu
,
Y.
,
Su
,
H.
,
Ferrigno
,
G.
, et al.,
2020
, “
A Novel Muscle-Computer Interface for Hand Gesture Recognition Using Depth Vision
,”
J. Ambient Intell. Humanized Comput.
,
11
(
11
), pp.
5569
5580
.10.1007/s12652-020-01913-3
5.
Lu
,
L.
,
Mao
,
J.
,
Wang
,
W.
,
Ding
,
G.
, and
Zhang
,
Z.
,
2020
, “
A Study of Personal Recognition Method Based on EMG Signal
,”
IEEE Trans. Biomed. Circuits Syst.
,
14
(
4
), pp.
681
691
.10.1109/TBCAS.2020.3005148
6.
Wan
,
Y.
,
Han
,
Z.
,
Zhong
,
J.
, and
Chen
,
G.
,
2018
, “
Pattern Recognition and Bionic Manipulator Driving by Surface Electromyography Signals Using Convolutional Neural Network
,”
Int. J. Adv. Rob. Syst.
,
15
(
5
), p.
172988141880213
.10.1177/1729881418802138
7.
Cheng
,
Y.
,
Li
,
G.
,
Yu
,
M.
,
Jiang
,
D.
,
Yun
,
J.
,
Liu
,
Y.
,
Liu
,
Y.
, et al.,
2021
, “
Gesture Recognition Based on Surface Electromyography-Feature Image
,”
Concurrency Comput. Pract. Exper.
,
33
(
6
), p.
e6051
.10.1002/cpe.6051
8.
Dwivedi
,
A.
,
Gerez
,
L.
,
Hasan
,
W.
,
Yang
,
C.-H.
, and
Liarokapis
,
M.
,
2019
, “
A Soft Exoglove Equipped With a Wearable Muscle-Machine Interface Based on Forcemyography and Electromyography
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3240
3246
.10.1109/LRA.2019.2925302
9.
Shi
,
W.-T.
,
Lyu
,
Z.-J.
,
Tang
,
S.-T.
,
Chia
,
T.-L.
, and
Yang
,
C.-Y.
,
2018
, “
A Bionic Hand Controlled by Hand Gesture Recognition Based on Surface EMG Signals: A Preliminary Study
,”
Biocybern. Biomed. Eng.
,
38
(
1
), pp.
126
135
.10.1016/j.bbe.2017.11.001
10.
Li
,
R.
,
Fan
,
Z.
,
Zhao
,
C.
,
Luo
,
L.
, and
Wang
,
K.
,
2014
, “
Motion Signal Extraction Method Based on sEMG Energy Gauss Distribution Characteristics
,”
Zhongguo yi Liao qi Xie za Zhi
,
38
(
3
), pp.
177
180
.
11.
Enqing
,
D.
,
Guizhong
,
L.
,
Yatong
,
Z.
, and
Yu
,
C.
,
2002
, “
Voice Activity Detection Based on Short-Time Energy and Noise Spectrum Adaptation
,”
6th International Conference on Signal Processing, Beijing, China
, Aug. 26–30, pp.
464
467
.
12.
Wu
,
J.
, and
Li
,
X.
,
Liu
,
W.
, and
Wang
,
Z. J.
,
2019
, “
sEMG Signal Processing Methods: A Review
,”
J. Phys. Conf. Ser.
,
1237
(
3
), p.
032008
.10.1088/1742-6596/1237/3/032008
13.
Geng
,
W.
,
Du
,
Y.
,
Jin
,
W.
,
Wei
,
W.
,
Hu
,
Y.
, and
Li
,
J.
,
2016
, “
Gesture Recognition by Instantaneous Surface EMG Images
,”
Sci. Rep.
,
6
(
1
), pp.
1
8
.10.1038/srep36571
14.
Shen
,
S.
,
Gu
,
K.
,
Chen
,
X.-R.
,
Yang
,
M.
, and
Wang
,
R.-C.
,
2019
, “
Movements Classification of Multi-Channel sEMG Based on CNN and Stacking Ensemble Learning
,”
IEEE Access
,
7
, pp.
137489
137500
.10.1109/ACCESS.2019.2941977
15.
O'Shea
,
K.
, and
Nash
,
R.
,
2018
, “
An Introduction to Convolutional Neural Networks
,” preprint
arXiv:1511(08458)
, pp.
173
190
.10.48550/arXiv.1511.08458
16.
Samadani
,
A.
,
2018
, “
Gated Recurrent Neural Networks for EMG-Based Hand Gesture Classification. A Comparative Study
,” Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
),
Honolulu, HI
, July 18–21, pp.
1
4
.10.1109/EMBC.2018.8512531
17.
Thakkar
,
V.
, and
Tewary
,
S.
,
2018
, “
Batch Normalization in Convolutional Neural Networks—A Comparative Study With Cifar-10 Data
,” 2018 Fifth International Conference on Emerging Applications of Information Technology (
EAIT
),
Kolkata, India
, Jan. 12–13, pp.
1
5
.10.1109/EAIT.2018.8470438
18.
Rasamoelina
,
A. D.
,
Adjailia
,
F.
, and
Sinčák
,
P.
,
2020
, “
A Review of Activation Function for Artificial Neural Network
,” 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (
SAMI
),
Herlany, Slovakia
, Jan. 23–25, pp.
281
286
.10.1109/SAMI48414.2020.9108717
19.
Klein
,
E. B.
,
Stone
,
W. N.
,
Hicks
,
M. W.
, and
Pritchard
,
I. L.
,
2003
, “
Understanding Dropouts
,”
J. Ment. Health Couns.
,
25
(
2
), pp.
89
100
.10.17744/mehc.25.2.xhyreggxdcd0q4ny
20.
Zhou
,
G.-B.
,
Wu
,
J.
,
Zhang
,
C.-L.
, and
Zhou
,
Z.-H.
,
2016
, “
Minimal Gated Unit for Recurrent Neural Networks
,”
Int. J. Autom. Comput.
,
13
(
3
), pp.
226
234
.10.1007/s11633-016-1006-2
21.
de Boer
,
P.-T.
,
Kroese
,
D. P.
,
Mannor
,
S.
, and
Rubinstein
,
R. Y.
,
2005
, “
A Tutorial on the Cross-Entropy Method
,”
Ann. Oper. Res.
,
134
(
1
), pp.
19
67
.10.1007/s10479-005-5724-z
22.
Ding
,
Z.
,
Yang
,
C.
,
Tian
,
Z.
,
Yi
,
C.
,
Fu
,
Y.
, and
Jiang
,
F.
,
2018
, “
sEMG-Based Gesture Recognition With Convolution Neural Networks
,”
Sustainability
,
10
(
6
), p.
1865
.10.3390/su10061865
23.
Zhao
,
P.
,
Li
,
X.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2016
, “
A Task-Driven Unified Synthesis of Planar Four-Bar and Six-Bar Linkages With R- and P- Joints for Five-Position Realization
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061003
.10.1115/1.4033434
24.
Tao
,
W.
,
Al-Amin
,
M.
,
Chen
,
H.
,
Leu
,
M. C.
,
Yin
,
Z.
, and
Qin
,
R.
,
2020
, “
Real-Time Assembly Operation Recognition With Fog Computing and Transfer Learning for Human-Centered Intelligent Manufacturing
,”
Procedia Manuf.
,
48
, pp.
926
931
.10.1016/j.promfg.2020.05.131
25.
Chen
,
H.
,
Leu
,
M. C.
, and
Yin
,
Z.
,
2022
, “
Real-Time Multi-Modal Human-Robot Collaboration Using Gestures and Speech
,”
ASME J. Manuf. Sci. Eng.
,
144
(
10
), p.
101007
.10.1115/1.4054297
You do not currently have access to this content.