Abstract

The lung is the human organ mainly affected by the severe coronavirus disease (COVID-19) caused by the novel coronavirus SARS-CoV-2. In this pathology, the dynamic lung function and the respiratory mechanics are compromised, leading to the development of the ARDS (acute respiratory distress syndrome). The resulting damage is the progressive reduction of gas exchange and death in the most critical patients. For these reasons, it is important to study and analyze how this virus adversely affects lung dynamics. The main objective of the present paper proposes a modeling method of SARS-CoV-2 virus particles spread in the 23rd generation of lung tree and the mechanical estimation of how a severe stage of COVID-19 characterized by pulmonary fibrosis affects the alveolar sac expansion and hence the breathing capability of the sick person. In this context, the dynamic analysis of the influence of SARS-CoV-2 spread on human lung under real conditions has been shown by means of a numerical approach. Therefore, a multiphase three-dimensional computational fluid dynamics (CFD) study is performed to estimate the COVID-19 virus particles dispersion throughout a simplified model of the 23rd generation of the bronchial tree, at the alveolar region. Then, a fully coupled fluid-structure interaction (FSI) with the mesh morphing technique and solid displacement characteristics are used to obtain and evaluate a realistic wall displacement during the expansion of the alveolar sac. A comparison is made between a healthy and a diseased lung. These phases are studied under cyclic steady-state conditions The novelties of this analysis are: first, the innovative CFD method proposed in order to model the particles spread inside the alveolar region, and second the evaluation of how the presence of Sars-Cov-2 can affect the mechanical properties of the alveolar sac and damage the lung function of a sick person at an advanced stage of infection, such as a person affected by pulmonary fibrosis.

References

1.
World Health Organization,
2023
, “
Weekly Epidemiological Update on COVID-19 - 25 January 2023
,”
World Health Organization
, Geneva, Switzerland, https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---25-january-2023
2.
Mulvey
,
J. J.
,
Magro
,
C. M.
,
Ma
,
L. X.
,
Nuovo
,
G. J.
, and
Baergen
,
R. N.
,
2020
, “
Analysis of Complement Deposition and Viral RNA in Placentas of COVID-19 Patients
,”
Ann. Diagn. Pathol.
,
46
, p.
151530
.10.1016/j.anndiagpath.2020.151530
3.
Madjid
,
M.
,
Safavi-Naeini
,
P.
,
Solomon
,
S. D.
, and
Vardeny
,
O.
,
2020
, “
Potential Effects of Coronaviruses on the Cardiovascular System: A Review
,”
JAMA Cardiol.
,
5
(
7
), pp.
831
840
.10.1001/jamacardio.2020.1286
4.
Cui
,
X.
,
Chen
,
W.
,
Zhou
,
H.
,
Gong
,
Y.
,
Zhu
,
B.
,
Lv
,
X.
,
Guo
,
H.
,
Duan
,
J.
,
Zhou
,
J.
,
Marcon
,
E.
, and
Ma
,
H.
,
2021
, “
Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential
,”
Front. Pharmacol.
,
12
, p.
664349
.10.3389/fphar.2021.664349
5.
Vasarmidi
,
E.
,
Tsitoura
,
E.
,
Spandidos
,
D. A.
,
Tzanakis
,
N.
, and
Antoniou
,
K. M.
,
2020
, “
Pulmonary Fibrosis in the Aftermath of the COVID-19 Era (Review)
,”
Exp. Ther. Med.
,
20
(
3
), pp.
2557
2560
.10.3892/etm.2020.8980
6.
Thannickal
,
V. J.
,
Toews
,
G. B.
,
White
,
E. S.
,
Lynch
,
J. P.
, III
,., and
Martinez
,
F. J.
,
2004
, “
Mechanisms of Pulmonary Fibrosis
,”
Annu. Rev. Med.
,
55
(
1
), pp.
395
417
.10.1146/annurev.med.55.091902.103810
7.
Zuo
,
Y. Y.
,
Uspal
,
W. E.
, and
Wei
,
T.
,
2020
, “
Airborne Transmission of COVID-19: Aerosol Dispersion, Lung Deposition, and Virus-Receptor Interactions
,”
ACS Nano
,
14
(
12
), pp.
16502
16524
.10.1021/acsnano.0c08484
8.
Warrell
,
D. A.
,
Cox
,
T. M.
,
Firth
,
J. D
, and
Benz
,
E. J.
Jr., eds.,
2003
,
Oxford Textbook of Medicine
, 4th ed.,
Oxford University Press
, Oxford, UK.
9.
Rockx
,
B.
,
Kuiken
,
T.
,
Herfst
,
S.
,
Bestebroer
,
T.
,
Lamers
,
M. M.
,
Oude Munnink
,
B. B.
, and
de Meulder
,
D.
, et al.,
2020
, “
Comparative Pathogenesis of COVID-19, MERS, and SARS in a Nonhuman Primate Model
,”
Science
,
368
(
6494
), pp.
1012
1015
.10.1126/science.abb7314
10.
Dowell
,
E. H.
, and
Hall
,
K. C.
,
2001
, “
Modeling of Fluid-Structure Interaction
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
445
490
.10.1146/annurev.fluid.33.1.445
11.
Star-CCM+
,” User Guide, Version 6 (
2015
):
016
.
12.
Kolanjiyil
,
A. V.
, and
Kleinstreuer
,
C.
,
2019
, “
Modeling Airflow and Particle Deposition in a Human Acinar Region
,”
Comput. Math. Methods Med.
,
2019
, pp.
1
13
.10.1155/2019/5952941
13.
Alexa
,
M.
,
2002
, “
Recent Advances in Mesh Morphing
,”
Comput. Graphics Forum
,
21
(
2
), pp.
173
198
.10.1111/1467-8659.00575
14.
Hu
,
D.
,
Lou
,
X.
,
Meng
,
N.
,
Li
,
Z.
,
Teng
,
Y.
,
Zou
,
Y.
, and
Wang
,
F.
,
2021
, “
Influence of Age and Gender on the Epidemic of COVID-19: Evidence from 177 Countries Territories—an Exploratory, Ecological Study
,”
Wien Klin Wochenschr
,
133
(
7–8
), pp.
321
330
.10.1007/s00508-021-01816-z
15.
Crampin
,
E. J.
,
Halstead
,
M.
,
Hunter
,
P.
,
Nielsen
,
P.
,
Noble
,
D.
,
Smith
,
N.
, and
Tawhai
,
M.
,
2004
, “
Computational Physiology and the Physiome Project
,”
Exp. Physiol.
,
89
(
1
), pp.
1
26
.10.1113/expphysiol.2003.026740
16.
Petrov
,
D.
,
2020
, “
Photopolarimetrical Properties of Coronavirus Model Particles: Spike Proteins Number Influence
,”
J. Quant. Spectrosc. Radiat. Transfer
,
248
, p.
107005
.10.1016/j.jqsrt.2020.107005
17.
Pidaparti
,
R.
,
2016
, “
Aged Human Airway Tissue Modeling and Analysis Using Coupled Mechanics, W3F.2.CS203_1489F1
,”
Proceedings of the 2016 World Congress on Advances in Civil, Environmental, and Materials Research
(
ACEM 16
), Jeju Island, Korea, Aug. 28–Sept. 1, Vol.
28
.http://www.iasem.org/publication_conf/acem16/3.ACSM16/W3F.2.CS203_1489F1.pdf
18.
Kim
,
J.
,
Heise
,
R. L.
,
Reynolds
,
A. M.
, and
Pidaparti
,
R. M.
,
2017
, “
Quantification of Age-Related Lung Tissue Mechanics Under Mechanical Ventilation
,”
Med. Sci.
,
5
(
4
), p.
21
.10.3390/medsci5040021
19.
Chen
,
L.
, and
Zhao
,
X.
,
2019
, “
Characterization of Air Flow and Lung Function in the Pulmonary Acinus by Fluid-Structure Interaction in Idiopathic Interstitial Pneumonias
,”
PloS One
,
14
(
3
), p. e0214441.10.1371/journal.pone.0214441
20.
Hsia
,
C. C.
,
Hyde
,
D. M.
, and
Weibel
,
E. R.
,
2016
, “
Lung Structure and the Intrinsic Challenges of Gas Exchange
,”
Compr. Physiol.
,
6
(
2
), pp.
827
895
.10.1002/cphy.c150028
21.
Chen
,
L.
,
Tao
,
W.
,
Ji
,
W.
,
Lu
,
Y.
, and
Zhao
,
X.
,
2021
, “
Effects of Pulmonary Fibrosis and Surface Tension on Alveolar Sac Mechanics in Diffuse Alveolar Damage
,”
ASME J. Biomech. Eng.
,
143
(
8
), p.
081013
.10.1115/1.4050789
22.
Soni
,
B.
, and
Aliabadi
,
S.
,
2013
, “
Large-Scale CFD Simulations of Airflow and Particle Deposition in Lung Airway
,”
Comput. Fluids
,
88
, pp.
804
812
.10.1016/j.compfluid.2013.06.015
23.
Scurani
,
L.
,
Fontanili
,
L.
,
Montorsi
,
L.
, and
Milani
,
M.
,
2022
, “
Analysis and Characterization of Diffusive Flows and Movement of the Human Acinar Region: An Experimentally Validated CFD Model
,”
Comput. Fluids
,
241
, p.
105475
.10.1016/j.compfluid.2022.105475
24.
Wedel
,
J.
,
Steinmann
,
P.
,
Štrakl
,
M.
,
Hriberšek
,
M.
, and
Ravnik
,
J.
,
2021
, “
Can CFD Establish a Connection to a Milder COVID-19 Disease in Younger People? Aerosol Deposition in Lungs of Different Age Groups Based on Lagrangian Particle Tracking in Turbulent Flow
,”
Comput. Mech.
,
67
(
5
), pp.
1497
1513
.10.1007/s00466-021-01988-5
25.
Stanfield
,
C. L.
,
Germann
,
W. J.
,
Niles
,
M. J.
, and
Cannon
,
J. G.
,
2011
,
Principles of Human Physiology
, Benjamin Cummings, London, UK.
26.
Pidaparti
,
R. M.
,
Burnette
,
M.
,
Heise
,
R. L.
, and
Reynolds
,
A.
,
2013
, “
Analysis for Stress Environment in the Alveolar Sac Model
,”
J. Biomed. Sci. Eng.
,
6
(
9
), pp.
901
907
.10.4236/jbise.2013.69110
27.
Lai-Fook
,
S. J.
, and
Hyatt
,
R. E.
,
2000
, “
Effects of Age on Elastic Moduli of Human Lungs
,”
J. Appl. Physiol.
,
89
(
1
), pp.
163
168
.10.1152/jappl.2000.89.1.163
28.
Martelli
,
F.
,
Milani
,
M.
,
Montorsi
,
L.
,
Ligabue
,
G.
, and
Torricelli
,
P.
,
2018
, “
Fluid-Structure Interaction of Blood Flow in Human Aorta Under Dynamic Conditions: A Numerical Approach
,”
ASME
Paper No. IMECE2018-87793.10.1115/IMECE2018-87793
29.
Jbaily
,
A.
,
Frank
,
S.
, and
Szeri
,
A. J.
,
2020
, “
Pulmonary Mechanics and Gas Exchange: A Mathematical Framework
,”
Int. J. Eng. Sci.
,
154
, p.
103276
.10.1016/j.ijengsci.2020.103276
30.
Dimbath
,
E.
,
Maddipati
,
V.
,
Stahl
,
J.
,
Sewell
,
K.
,
Domire
,
Z.
,
George
,
S.
, and
Vahdati
,
A.
,
2021
, “
Implications of Microscale Lung Damage for COVID-19 Pulmonary Ventilation Dynamics: A Narrative Review
,”
Life Sci.
,
274
, p.
119341
.10.1016/j.lfs.2021.119341
31.
Edwards
,
Z.
, and
Annamaraju
,
P.
,
2020
,
Physiology, Lung Compliance
, StatPearls, StatPearls Publishing, Treasure Island, FL.
32.
Ng
,
M. Y.
,
Lee
,
E. Y.
,
Yang
,
J.
,
Yang
,
F.
,
Li
,
X.
,
Wang
,
H.
, and
Kuo
,
M. D.
,
2020
, “
Imaging Profile of the COVID-19 Infection: Radiologic Findings and Literature Review
,”
Radiol. Cardiothorac. Imaging
,
2
(
1
), p. e200034.10.1148/ryct.2020200034
33.
Sadhukhan
,
P.
,
Ugurlu
,
M. T.
, and
Hoque
,
M. O.
,
2020
, “
Effect of COVID-19 on Lungs: Focusing on Prospective Malignant Phenotypes
,”
Cancers
,
12
(
12
), p. 3822.10.3390/cancers12123822
34.
Vayá
,
M. D. L. I.
,
Saborit
,
J. M.
,
Montell
,
J. A.
,
Pertusa
,
A.
,
Bustos
,
A.
,
Cazorla
,
M.
, and
Salinas
,
J. M.
,
2020
, “
BIMCV COVID-19+: A Large Annotated Dataset of RX and CT Images From COVID-19 Patients
,” arXiv preprint
arXiv:2006.01174
.10.21227/w3aw-rv39
35.
Hough
,
A.
,
2001
,
Physiotherapy in Respiratory Care–An Evidence-Based Approach to Respiratory and Cardiac Management, Nelson Thornes
, Cheltenham, UK.
36.
Ricard
,
J. D.
,
2003
, “
Are we Really Reducing Tidal Volume—and Should We?
,”
Am. J. Respir. Crit. Care Med.
,
167
(
10
), pp.
1297
1298
.10.1164/rccm.2303003
37.
Delgado
,
B. J.
, and
Bajaj
,
T.
,
2019
,
Physiology, Lung Capacity
, StatPearls, StatPearls Publishing, Treasure Island, FL.
38.
Kavanagh
,
B. P.
, and
Hedenstierna
,
G.
,
2015
, “
Respiratory Physiology and Pathophysiology
,”
Miller's Anesthesia
,
8
, pp.
444
472
.https://fundanest.org.ar/wp-content/uploads/2016/07/Miller-fisio-respiratoria.pdf
You do not currently have access to this content.