Abstract

We present the conceptual design and limited functionality prototype and characterization of a system for application in transurethral palpation of any targeted area of the bladder interior wall tissue consisting of a robotic manipulator and a microforce sensor attached at its tip all less than 3.5mm in diameter. A hyper-redundant ten-joint six degrees-of-freedom (6DOF) manipulator (5DOF rigid and five-joint continuum segments) is presented along with the forward and inverse kinematics analyses based on a Jacobian formulation to prevent configuration singularities. Simulated motion studies demonstrate the ability of the proposed manipulator to attain a desired pose (normal to the tissue) with any area in the bladder including the difficult to reach trigone area. A strain gauge-based microforce sensor is designed using finite element analysis (safety factor > 3), prototyped using additive manufacturing, and characterized. The characterized sensor was used to acquire in vivo measurements to evaluate human palm tissue viscoelastic properties. A single module of the continuum segment is designed and prototyped using additive manufacturing, and used to characterize its tension-bend angle behavior. Finite element analysis is used to improve structurally weak regions of the vertebra. A three-joint four-vertebrae prototype was successfully actuated to reach a bend state using tendons. The developed robot and sensor prototypes demonstrate capabilities of the proposed concept which could be a possible solution to quantitatively evaluate localized biomechanical properties of the bladder tissue to improve treatment and provide better patient care.

References

1.
Abraham
,
M. R.
,
2016
, “
Automated System for the Characterization of the Biomechanical Properties of Human Soft Tissue
,”
Master's thesis
,
The University of Texas at Arlington
,
Arlington, TX
.http://hdl.handle.net/10106/28379
2.
Chuong
,
C.-J.
,
Ma
,
M.
,
Eberhart
,
R. C.
, and
Zimmern
,
P.
,
2014
, “
Viscoelastic Properties Measurement of the Prolapsed Anterior Vaginal Wall: A Patient-Directed Methodology
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
173
(
1
), pp.
106
112
.10.1016/j.ejogrb.2013.11.012
3.
Hoyt
,
K.
,
Castaneda
,
B.
,
Zhang
,
M.
,
Nigwekar
,
P.
,
di Sant'Agnese
,
P. A.
,
Joseph
,
J. V.
,
Strang
,
J.
,
Rubens
,
D. J.
, and
Parker
,
K. J.
,
2008
, “
Tissue Elasticity Properties as Biomarkers for Prostate Cancer
,”
Cancer Biomarkers
,
4
(
4–5
), pp.
213
225
.10.3233/CBM-2008-44-505
4.
Maccabi
,
A.
,
Shin
,
A.
,
Namiri
,
N. K.
,
Bajwa
,
N.
,
John
,
M. S.
,
Taylor
,
Z. D.
,
Grundfest
,
W.
, and
Saddik
,
G. N.
,
2018
, “
Quantitative Characterization of Viscoelastic Behavior in Tissue-Mimicking Phantoms and Ex Vivo Animal Tissues
,”
PLoS One
,
13
(
1
), p.
e0191919
.10.1371/journal.pone.0191919
5.
Wang
,
C. N.
,
Abraham
,
M. R.
,
Abrego
,
C. E.
,
Shiakolas
,
P. S.
,
Christie
,
A.
, and
Zimmern
,
P. E.
,
2021
, “
An Operator-Independent Artificial Finger Can Differentiate Anterior Vaginal Wall Indentation Parameters Between Control and Prolapse Patients
,”
J. Biomech.
,
120
, p.
110378
.10.1016/j.jbiomech.2021.110378
6.
Nagelkerke
,
A.
,
Bussink
,
J.
,
Rowan
,
A. E.
, and
Span
,
P. N.
,
2015
, “
The Mechanical Microenvironment in Cancer: How Physics Affects Tumours
,”
Semin. Cancer Biol.
,
35
, pp.
62
70
.10.1016/j.semcancer.2015.09.001
7.
Ansardamavandi
,
A.
,
Tafazzoli-Shadpour
,
M.
,
Omidvar
,
R.
, and
Jahanzad
,
I.
,
2016
, “
Quantification of Effects of Cancer on Elastic Properties of Breast Tissue by Atomic Force Microscopy
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
234
242
.10.1016/j.jmbbm.2015.12.028
8.
Walter
,
C.
,
Crawford
,
L.
,
Lai
,
M.
,
Toonen
,
J. A.
,
Pan
,
Y.
,
Sakiyama-Elbert
,
S.
,
Gutmann
,
D. H.
, and
Pathak
,
A.
,
2017
, “
Increased Tissue Stiffness in Tumors From Mice With Neurofibromatosis-1 Optic Glioma
,”
Biophys. J.
,
112
(
8
), pp.
1535
1538
.10.1016/j.bpj.2017.03.017
9.
Goldman
,
R. E.
,
Bajo
,
A.
,
MacLachlan
,
L. S.
,
Pickens
,
R.
,
Herrell
,
S. D.
, and
Simaan
,
N.
,
2012
, “
Design and Performance Evaluation of a Minimally Invasive Telerobotic Platform for Transurethral Surveillance and Intervention
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
918
925
.10.1109/TBME.2012.2226031
10.
Wilby
,
D.
,
Thomas
,
K.
,
Ray
,
E.
,
Chappell
,
B.
, and
O'Brien
,
T.
,
2009
, “
Bladder Cancer: New TUR Techniques
,”
World J. Urol.
,
27
(
3
), pp.
309
312
.10.1007/s00345-009-0398-9
11.
Kumat
,
S. S.
,
2018
, “
A Robotic Device to Assist With In-Vivo Measurement of Human Pelvic Organ Tissue Properties
,”
Master's thesis
,
The University of Texas at Arlington
,
Arlington, TX
.http://hdl.handle.net/10106/28386
12.
Simaan
,
N.
,
Yasin
,
R. M.
, and
Wang
,
L.
,
2018
, “
Medical Technologies and Challenges of Robot-Assisted Minimally Invasive Intervention and Diagnostics
,”
Annu. Rev. Control, Rob., Auton. Syst.
,
1
, pp.
465
490
.10.1146/annurev-control-060117-104956
13.
Jiang
,
A.
,
Adejokun
,
S.
,
Faragasso
,
A.
,
Althoefer
,
K.
,
Nanayakkara
,
T.
, and
Dasgupta
,
P.
,
2014
, “
The Granular Jamming Integrated Actuator
,” 2014 International Conference on Advanced Robotics and Intelligent Systems (
ARIS
), Taipei, Taiwan, June 6–8, pp.
12
17
.10.1109/aris.2014.6871512
14.
Yoon
,
H.-S.
,
Cha
,
H.-J.
,
Chung
,
J.
, and
Yi
,
B.-J.
,
2013
, “
Compact Design of a Dual Master-Slave System for Maxillary Sinus Surgery
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–8, pp.
5027
5032
.10.1109/iros.2013.6697083
15.
Simaan
,
N.
,
Xu
,
K.
,
Wei
,
W.
,
Kapoor
,
A.
,
Kazanzides
,
P.
,
Taylor
,
R.
, and
Flint
,
P.
,
2009
, “
Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1134
1153
.10.1177/0278364908104278
16.
Kesner
,
S. B.
, and
Howe
,
R. D.
,
2014
, “
Robotic Catheter Cardiac Ablation Combining Ultrasound Guidance and Force Control
,”
Int. J. Rob. Res.
,
33
(
4
), pp.
631
644
.10.1177/0278364913511350
17.
Deng
,
Y.
,
Yang
,
T.
,
Dai
,
S.
, and
Song
,
G.
,
2020
, “
A Miniature Triaxial Fiber Optic Force Sensor for Flexible Ureteroscopy
,”
IEEE Trans. Biomed. Eng.
,
68
(
8
), pp.
2339
2347
.10.1109/TBME.2020.3034336
18.
Li
,
T.
,
Pan
,
A.
, and
Ren
,
H.
,
2020
, “
A High-Resolution Triaxial Catheter Tip Force Sensor With Miniature Flexure and Suspended Optical Fibers
,”
IEEE Trans. Ind. Electron.
,
67
(
6
), pp.
5101
5111
.10.1109/TIE.2019.2926052
19.
Giurgiutiu
,
V.
,
2015
, “
Structural Health Monitoring (SHM) of Aerospace Composites
,”
Polymer Composites in the Aerospace Industry
,
Woodhead Publishing
, Sawston, UK, pp.
449
507
.10.1016/B978-0-85709-523-7.00016-5
20.
Shi
,
C.
,
Li
,
T.
, and
Ren
,
H.
,
2018
, “
A Millinewton Resolution Fiber Bragg Grating-Based Catheter Two-Dimensional Distal Force Sensor for Cardiac Catheterization
,”
IEEE Sens. J.
,
18
, pp.
1539
1546
.10.1109/JSEN.2017.2779153
21.
Hendrick
,
R. J.
,
Mitchell
,
C. R.
,
Herrell
,
S. D.
, and
Webster
,
R. J.
, III
,
2015
, “
Hand-Held Transendoscopic Robotic Manipulators: A Transurethral Laser Prostate Surgery Case Study
,”
Int. J. Rob. Res.
,
34
(
13
), pp.
1559
1572
.10.1177/0278364915585397
22.
Hudson
,
R. G.
,
Conlin
,
M. J.
, and
Bagley
,
D. H.
,
2005
, “
Ureteric Access With Flexible Ureteroscopes: Effect of the Size of the Ureteroscope
,”
BJU Int.
,
95
(
7
), pp.
1043
1044
.10.1111/j.1464-410X.2005.05462.x
23.
De Coninck
,
V.
,
Keller
,
E. X.
,
Somani
,
B.
,
Giusti
,
G.
,
Proietti
,
S.
,
Rodriguez-Socarras
,
M.
,
Rodríguez-Monsalve
,
M.
,
Doizi
,
S.
,
Ventimiglia
,
E.
, and
Traxer
,
O.
,
2020
, “
Complications of Ureteroscopy: A Complete Overview
,”
World J. Urol.
,
38
, pp.
2147
2166
.10.1007/s00345-019-03012-1
24.
Lildal
,
S. K.
,
Andreassen
,
K. H.
,
Jung
,
H.
,
Pedersen
,
M. R.
, and
Osther
,
P. J. S.
,
2018
, “
Evaluation of Ureteral Lesions in Ureterorenoscopy: Impact of Access Sheath Use
,”
Scand. J. Urol.
,
52
(
2
), pp.
157
161
.10.1080/21681805.2018.1430705
25.
Rahn
,
D. D.
,
Bleich
,
A. T.
,
Wai
,
C. Y.
,
Roshanravan
,
S. M.
,
Wieslander
,
C. K.
,
Schaffer
,
J. I.
, and
Corton
,
M. M.
,
2007
, “
Anatomic Relationships of the Distal Third of the Pelvic Ureter, Trigone, and Urethra in Unembalmed Female Cadavers
,”
Am. J. Obstet. Gynecol.
,
197
(
6
), p.
668.e1-4
.10.1016/j.ajog.2007.08.068
26.
Kumat
,
S. S.
, and
Shiakolas
,
P. S.
,
2022
, “
Design, Inverted Vat Photopolymerization 3D Printing, and Initial Characterization of a Miniature Force Sensor for Localized In Vivo Tissue Measurements
,”
3D Print. Med.
,
8
(
1
), pp.
1
14
.10.1186/s41205-021-00128-2
27.
Siciliano
,
B.
,
1990
, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Intell. Rob. Syst.
,
3
(
3
), pp.
201
212
.10.1007/BF00126069
28.
Samur
,
E.
,
Sedef
,
M.
,
Basdogan
,
C.
,
Avtan
,
L.
, and
Duzgun
,
O.
,
2007
, “
A Robotic Indenter for Minimally Invasive Measurement and Characterization of Soft Tissue Response
,”
Med. Image Anal.
,
11
(
4
), pp.
361
373
.10.1016/j.media.2007.04.001
29.
Carter
,
F. J.
,
Frank
,
T. G.
,
Davies
,
P. J.
,
McLean
,
D.
, and
Cuschieri
,
A.
,
2001
, “
Measurements and Modelling of the Compliance of Human and Porcine Organs
,”
Med. Image Anal.
,
5
(
4
), pp.
231
236
.10.1016/S1361-8415(01)00048-2
30.
Formlabs,
2021
, “
Grey Resin, Safety Data Sheet
,” Formlabs, Somerville, MA, accessed Apr. 19, 2021, https://formlabs-media.formlabs.com/datasheets/1801046-SDS-ENUS-0.pdf
31.
Formlabs,
2021
, “
Post Processing Tech Specs, Wash and Cure
,” Formlabs, Somerville, MA, accessed Apr. 19, 2021, https://formlabs.com/post-processing/wash-cure/tech-specs/
32.
Pansart
,
S.
,
2013
, “
Prepreg Processing of Advanced Fibre-Reinforced Polymer (FRP) Composites
,” Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications,
Woodhead Publishing
, Sawston, UK, pp.
125
154
.
33.
Mansouri
,
M. R.
, and
Darijani
,
H.
,
2014
, “
Constitutive Modeling of Isotropic Hyperelastic Materials in an Exponential Framework Using a Self-Contained Approach
,”
Int. J. Solids Struct.
,
51
, pp.
4316
4326
.10.1016/j.ijsolstr.2014.08.018
34.
Guit
,
J.
,
Tavares
,
M. B. L.
,
Hul
,
J.
,
Ye
,
C.
,
Loos
,
K.
,
Jager
,
J.
,
Folkersma
,
R.
, and
Voet
,
V. S. D.
,
2020
, “
Photopolymer Resins With Biobased Methacrylates Based on Soybean Oil for Stereolithography
,”
ACS Appl. Polym. Mater.
,
2
(
2
), pp.
949
957
.10.1021/acsapm.9b01143
35.
Anycubic, 2022, “
Consumables Plant-Based UV Resin
,” Anycubic, Shenzhan, China, accessed Sept. 9, 2022, https://www.anycubic.com/collections/plant-based-uv-resin
36.
Su
,
J.
,
Zou
,
H.
, and
Guo
,
T.
,
2009
, “
The Study of Mechanical Properties on Soft Tissue of Human Forearm In Vivo
,”
3rd International Conference on Bioinformatics and Biomedical Engineering
, Beijing, China, June 11–16, pp.
1
4
.10.1109/ICBBE.2009.5163671
37.
Shojaeizadeh
,
M.
,
Spartacus
,
V.
, and
Sparrey
,
C. J.
,
2022
, “
A Constitutive Model to Characterize In Vivo Human Palmar Tissue
,”
ASME J. Biomech. Eng.
,
145
(
2
), p.
021001
.10.1115/1.4055562
38.
Adejokun
,
S. A.
,
2017
, “
Flexible-Continuum Robot for Bladder Tissue Diagnostics
,”
Master's thesis
,
The University of Texas at Arlington
,
Arlington, TX
.http://hdl.handle.net/10106/27922
39.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
3
rd ed.,
Pearson Education
,
Upper Saddle River, NJ
.
40.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2020
,
Robot Modeling and Control
,
Wiley
,
Hoboken, NJ
.
41.
Nenchev
,
D. N.
,
Konno
,
A.
, and
Tsujita
,
T.
,
2018
,
Humanoid Robots: Modeling and Control
,
Butterworth-Heinemann
,
Oxford, UK
.
42.
Buss
,
S. R.
,
2009
, “
Introduction to Inverse Kinematics With Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods
,” accessed Sept. 9, 2022, http://graphics.cs.cmu.edu/nsp/course/15-464/Spring11/handouts/iksurvey.pdf
43.
Wang
,
X.
,
Schoen
,
J. A.
, and
Rentschler
,
M. E.
,
2013
, “
A Quantitative Comparison of Soft Tissue Compressive Viscoelastic Model Accuracy
,”
J. Mech. Behav. Biomed. Mater.
,
20
, pp.
126
136
.10.1016/j.jmbbm.2013.01.007
You do not currently have access to this content.