Abstract

A tube-load model is used to reconstruct aortic pressure waveform from peripheral pressure waveform. Yet, the reconstructed aortic pressure waveform is greatly affected by load impedance used. In this work, a vibrating-string model for closed-loop wave transmission and reflection between the aorta and periphery is developed to examine the roles of all the parameters involved in aortic pressure waveform. The arterial pulsatile wave theory gives rise to the standard one-dimensional wave equation for a vibrating string. A vibrating-string model based on radial displacement of the arterial wall is developed to relate aortic pressure waveform to peripheral pressure waveform, relate load impedance to input impedance, and derive theoretical expressions for associated clinical indices. The vibrating-string model is extended to incorporate blood velocity and is further connected to the left ventricle (LV) to study the role of the LV in aortic pressure waveform. The difference between the vibrating-string model and the tube-load model is also examined. Load impedance is identified as an indispensable independent parameter for reconstruction of aortic pressure waveform with accuracy, and its physiologically realistic harmonic dependence can only be obtained from the measured input impedance. The derived expressions for clinical indices interpret some clinical findings and underscore the role of harmonics in clinical indices. Some misconceptions in the tube-load model are revealed, including load impedance and characteristic impedance. This work clarifies the role of harmonics-dependence of load impedance and harmonics of aortic pressure waveform in determining clinical indices.

References

1.
Westerhof
,
B. E.
, and
Westerhof
,
N.
,
2018
, “
Uniform Tube Models With Single Reflection Site Do Not Explain Aortic Wave Travel and Pressure Wave Shape
,”
Physiol. Meas.
,
39
(
12
), p.
124006
.10.1088/1361-6579/aaf3dd
2.
Zhou
,
S.
,
Xu
,
L.
,
Hao
,
L.
,
Xiao
,
H.
,
Yao
,
Y.
,
Qi
,
L.
, and
Yao
,
Y.
,
2019
, “
A Review on Low-Dimensional Physics-Based Models of Systemic Arteries: Application to Estimation of Central Aortic Pressure
,”
Biomed. Eng. Online
,
18
(
1
), p.
41
.10.1186/s12938-019-0660-3
3.
Zhang
,
G.
,
Hahn
,
J. O.
, and
Mukkamala
,
R.
,
2011
, “
Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics
,”
Front. Physiol.
,
2
, p.
72
.10.3389/fphys.2011.00072
4.
Gao
,
M.
,
Rose
,
W. C.
,
Fetics
,
B.
,
Kass
,
D. A.
,
Chen
,
C. H.
, and
Mukkamala
,
R.
,
2016
, “
A Simple Adaptive Transfer Function for Deriving the Central Blood Pressure Waveform From a Radial Blood Pressure Waveform
,”
Sci. Rep.
,
14
(
6
), p.
33230
.10.1038/srep33230
5.
Du
,
S.
,
Liu
,
W.
,
Yao
,
Y.
,
Sun
,
G.
,
He
,
Y.
,
Alastruey
,
J.
,
Xu
,
L.
,
Yao
,
Y.
, and
Qian
,
W.
,
2022
, “
Reconstruction of the Aortic Pressure Waveform Using a Two-Level Adaptive Transfer Function Strategy
,”
Measurement
,
204
, p.
112111
.10.1016/j.measurement.2022.112111
6.
Ebrahimi
,
N. S.
,
Carey
,
J. P.
,
McMurtry
,
M. S.
, and
Hahn
,
J. O.
,
2017
, “
Model-Based Cardiovascular Disease Diagnosis: A Preliminary in-Silico Study
,”
Biomech. Model Mechanobiol.
,
16
(
2
), pp.
549
560
.10.1007/s10237-016-0836-8
7.
Mousavi
,
A.
,
Tivay
,
A.
,
Finegan
,
B.
,
McMurtry
,
M. S.
,
Mukkamala
,
R.
, and
Hahn
,
J. O.
,
2019
, “
Tapered vs. Uniform Tube-Load Modeling of Blood Pressure Wave Propagation in Human Aorta
,”
Front. Physiol.
,
10
, p.
974
.10.3389/fphys.2019.00974
8.
Qureshi
,
M. U.
,
Colebank
,
M. J.
,
Schreier
,
D. A.
,
Tabima
,
D. M.
,
Haider
,
M. A.
,
Chesler
,
N. C.
, and
Olufsen
,
M. S.
,
2018
, “
Characteristic Impedance: Frequency or Time Domain Approach?
,”
Physiol. Meas.
,
39
(
1
), p.
014004
.10.1088/1361-6579/aa9d60
9.
Westerhof
,
N.
, and
Westerhof
,
B. E.
,
2012
, “
Wave Transmission and Reflection of Waves “the Myth is in Their Use
,”
Artery Res.
,
6
(
1
), pp.
1
6
.10.1016/j.artres.2012.01.004
10.
Hao
,
Z.
,
Rahman
,
M. M.
,
Jutlah
,
L. B. L.
,
Athaide
,
C. E.
, and
Au
,
J. S.
,
2023
, “
Axial Wall Displacement at the Common Carotid Artery is Associated With the Lamb Waves
,”
ASME J. Med. Diagn.
,
6
(
1
), p.
011008
.10.1115/1.4056267
11.
Womersley
,
J. R.
,
1955
, “
XXIV. Oscillatory Motion of a Viscous Liquid in a Thin-Walled Elastic Tube—I: The Linear Approximation for Long Waves
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
46
(
373
), pp.
199
221
.10.1080/14786440208520564
12.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
2000
,
Fundamentals of Acoustics
, 4th ed.,
Wiley
,
Hoboken, NJ
.
13.
Wang
,
J. J.
, and
Parker
,
K. H.
,
2004
, “
Wave Propagation in a Model of the Arterial Circulation
,”
J. Biomech.
,
37
(
4
), pp.
457
70
.10.1016/j.jbiomech.2003.09.007
14.
Afkhami
,
R.
, and
Johnson
,
S.
,
2021
, “
Wave Reflection: More Than a Round Trip
,”
Med. Eng. Phys.
,
92
, pp.
40
44
.10.1016/j.medengphy.2021.04.005
15.
Zhu
,
Q.
,
Tian
,
X.
,
Wong
,
C. W.
, and
Wu
,
M.
,
2021
, “
Learning Your Heart Actions From Pulse: ECG Waveform Reconstruction From PPG
,”
IEEE Internet Things J.
,
8
(
23
), pp.
16734
16748
.10.1109/JIOT.2021.3097946
16.
Raichel
,
D. R.
,
2006
,
The Science and Applications of Acoustics
,
Springer Science & Business Media
, Berlin.
17.
Heusinkveld
,
M. H. G.
,
Delhaas
,
T.
,
Lumens
,
J.
,
Huberts
,
W.
,
Spronck
,
B.
,
Hughes
,
A. D.
, and
Reesink
,
K. D.
,
2019
, “
Augmentation Index is Not a Proxy for Wave Reflection Magnitude: Mechanistic Analysis Using a Computational Model
,”
J. Appl. Physiol.
,
127
(
2
), pp.
491
500
.10.1152/japplphysiol.00769.2018
18.
Chen
,
P. J.
,
Wu
,
H. K.
,
Hsu
,
P. C.
,
Lo
,
L. C.
, and
Chang
,
H. H.
,
2020
, “
Effects of Five Daily Activities on Harmonic Analysis of the Radial Pulse
,”
Evid. Based Complement. Altern. Med.
, 2020, p.
6095674
.10.1155/2020/6095674
19.
Tokunaga
,
T.
,
Mori
,
K.
,
Kadowaki
,
H.
, and
Saito
,
T.
,
2020
, “
Study on Natural Vibration Characteristics Based on the Coupled Wave Theory of Spring Supported Elastic Pipes and Fluids
,”
ASME
Paper No. IMECE2020-23742.10.1115/IMECE2020-23742
You do not currently have access to this content.