Abstract

A framework for quantifying the uncertainty propagating through the signal energy-based acoustic source localization approach in an orthotropic plate under an uncertainty in the properties of the plate material is presented. Seven mechanical properties of an orthotropic plate material, namely, density and six elastic constants, are considered as lognormally distributed and mutually independent random variables (RVs) with a fixed coefficient of variation for all seven random variables. Their means are considered such that the “mean” plate exhibits a strong anisotropy. Using Latin hypercube sampling, several design points in lognormal spaces of these random variables are selected. For each design point, an acoustic event is simulated in the corresponding plate using finite element analyses. The signal energy-based approach is applied to localize the acoustic source for each design point. The localization error for each design point is taken as the “response,” and a regression kriging metamodel is constructed through these response values at the design points. Monte Carlo (MC) points are selected in lognormal spaces of the random variables, and the response values at these Monte Carlo points are estimated using the regression kriging metamodel. The distribution parameters of the so-obtained response values are computed. Finally, a global sensitivity analysis of the random variables is carried out by computing the Sobol’ indices.

References

1.
Kundu
,
T.
,
2014
, “
Acoustic Source Localization
,”
Ultrasonics
,
54
(
1
), pp.
25
38
.
2.
Hassan
,
F.
,
Mahmood
,
A. K. B.
,
Yahya
,
N.
,
Saboor
,
A.
,
Abbas
,
M. Z.
,
Khan
,
Z.
, and
Rimsan
,
M.
,
2021
, “
State-of-the-Art Review on the Acoustic Emission Source Localization Techniques
,”
IEEE Access
,
9
, pp.
101246
101266
.
3.
Meo
,
M.
,
Zumpano
,
G.
,
Piggott
,
M.
, and
Marengo
,
G.
,
2005
, “
Impact Identification on a Sandwich Plate From Wave Propagation Responses
,”
Compos. Struct.
,
71
(
3–4
), pp.
302
306
.
4.
Kundu
,
T.
,
Das
,
S.
,
Martin
,
S. A.
, and
Jata
,
K. V.
,
2008
, “
Locating Point of Impact in Anisotropic Fiber Reinforced Composite Plates
,”
Ultrasonics
,
48
(
3
), pp.
193
201
.
5.
Koabaz
,
M.
,
Hajzargarbashi
,
T.
,
Kundu
,
T.
, and
Deschamps
,
M.
,
2012
, “
Locating the Acoustic Source in an Anisotropic Plate
,”
Struct. Health Monit.
,
11
(
3
), pp.
315
323
.
6.
Kundu
,
T.
,
Nakatani
,
H.
, and
Takeda
,
N.
,
2012
, “
Acoustic Source Localization in Anisotropic Plates
,”
Ultrasonics
,
52
(
6
), pp.
740
746
.
7.
Yin
,
S.
,
Cui
,
Z.
, and
Kundu
,
T.
,
2018
, “
Acoustic Source Localization in Anisotropic Plates With “Z” Shaped Sensor Clusters
,”
Ultrasonics
,
84
, pp.
34
37
.
8.
Ciampa
,
F.
, and
Meo
,
M.
,
2010
, “
A New Algorithm for Acoustic Emission Localization and Flexural Group Velocity Determination in Anisotropic Structures
,”
Compos. Part A: Appl. Sci.
,
41
(
12
), pp.
1777
1786
.
9.
Dehghan Niri
,
E.
,
Farhidzadeh
,
A.
, and
Salamone
,
S.
,
2014
, “
Nonlinear Kalman Filtering for Acoustic Emission Source Localization in Anisotropic Panels
,”
Ultrasonics
,
54
(
2
), pp.
486
501
.
10.
Ciampa
,
F.
, and
Meo
,
M.
,
2012
, “
Impact Detection in Anisotropic Materials Using a Time Reversal Approach
,”
Struct. Health Monit.
,
11
(
1
), pp.
43
49
.
11.
Park
,
B.
,
Sohn
,
H.
,
Olson
,
S. E.
,
DeSimio
,
M. P.
,
Brown
,
K. S.
, and
Derriso
,
M. M.
,
2012
, “
Impact Localization in Complex Structures Using Laser-Based Time Reversal
,”
Struct. Health Monit.
,
11
(
5
), pp.
577
588
.
12.
Kundu
,
T.
,
Yang
,
X.
,
Nakatani
,
H.
, and
Takeda
,
N.
,
2015
, “
A Two-Step Hybrid Technique for Accurately Localizing Acoustic Source in Anisotropic Structures Without Knowing Their Material Properties
,”
Ultrasonics
,
56
, pp.
271
278
.
13.
Simone
,
M. E. D.
,
Ciampa
,
F.
,
Boccardi
,
S.
, and
Meo
,
M.
,
2017
, “
Impact Source Localisation in Aerospace Composite Structures
,”
Smart Mater. Struct.
,
26
(
12
), p.
125026
.
14.
Sabzevari
,
S. A. H.
, and
Moavenian
,
M.
,
2017
, “
Sound Localization in an Anisotropic Plate Using Electret Microphones
,”
Ultrasonics
,
73
, pp.
114
124
.
15.
Xiao
,
D.
,
He
,
T.
,
Pan
,
Q.
,
Liu
,
X.
,
Wang
,
J.
, and
Shan
,
Y.
,
2014
, “
A Novel Acoustic Emission Beamforming Method With Two Uniform Linear Arrays on Plate-Like Structures
,”
Ultrasonics
,
54
(
2
), pp.
737
745
.
16.
Jang
,
B. W.
, and
Kim
,
C. G.
,
2019
, “
Impact Localization of Composite Stiffened Panel With Triangulation Method Using Normalized Magnitudes of Fiber Optic Sensor Signals
,”
Compos. Struct.
,
211
, pp.
522
529
.
17.
Baxter
,
M. G.
,
Pullin
,
R.
,
Holford
,
K. M.
, and
Evans
,
S. L.
,
2007
, “
Delta T Source Location for Acoustic Emission
,”
Mech. Syst. Signal Process.
,
21
(
3
), pp.
1512
1520
.
18.
Hensman
,
J.
,
Mills
,
R.
,
Pierce
,
S. G.
,
Worden
,
K.
, and
Eaton
,
M.
,
2010
, “
Locating Acoustic Emission Sources in Complex Structures Using Gaussian Processes
,”
Mech. Syst. Signal Process.
,
24
(
1
), pp.
211
223
.
19.
Gollob
,
S.
,
Kocur
,
G. K.
,
Schumacher
,
T.
,
Mhamdi
,
L.
, and
Vogel
,
T.
,
2017
, “
A Novel Multi-segment Path Analysis Based on a Heterogeneous Velocity Model for the Localization of Acoustic Emission Sources in Complex Propagation Media
,”
Ultrasonics
,
74
, pp.
48
61
.
20.
Park
,
W. H.
,
Packo
,
P.
, and
Kundu
,
T.
,
2017
, “
Acoustic Source Localization in an Anisotropic Plate Without Knowing its Material Properties—A New Approach
,”
Ultrasonics
,
79
, pp.
9
17
.
21.
Sen
,
N.
, and
Kundu
,
T.
,
2018
, “
A New Wave Front Shape-Based Approach for Acoustic Source Localization in an Anisotropic Plate Without Knowing Its Material Properties
,”
Ultrasonics
,
87
, pp.
20
32
.
22.
Sen
,
N.
, and
Kundu
,
T.
,
2020
, “
Acoustic Source Localization in a Highly Anisotropic Plate With Unknown Orientation of Its Axes of Symmetry and Material Properties With Numerical Verification
,”
Ultrasonics
,
100
, p.
105977
.
23.
Sen
,
N.
,
Gawroński
,
M.
,
Packo
,
P.
,
Uhl
,
T.
, and
Kundu
,
T.
,
2021
, “
Square-Shaped Sensor Clusters for Acoustic Source Localization in Anisotropic Plates by Wave Front Shape-Based Approach
,”
Mech. Syst. Signal Process.
,
153
, p.
107489
.
24.
Sen
,
N.
, and
Kundu
,
T.
,
2022
, “
A New Signal Energy-Based Approach to Acoustic Source Localization in Orthotropic Plates: A Numerical Study
,”
Mech. Syst. Signal Process.
,
171
, p.
108843
.
25.
Sen
,
N.
,
Kundu
,
T.
, and
Missoum
,
S.
,
2022
, “
A Note on the Effect of Material Uncertainty on Acoustic Source Localization Error in Anisotropic Plates
,”
Ultrasonics
,
119
, p.
106623
.
26.
Lacaze
,
S.
, and
Missoum
,
S.
,
2015
, “
CODES: A Toolbox for Computational Design (Version 1.0)
,” www.codes.arizona.edu/toolbox
27.
Sobol’
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
28.
Missoum
,
S.
,
Lacaze
,
S.
,
Amabili
,
M.
, and
Alijani
,
F.
,
2017
, “
Identification of Material Properties of Composite Sandwich Panels Under Geometric Uncertainty
,”
Compos. Struct.
,
179
, pp.
695
704
.
29.
Saltelli
,
A.
,
2002
, “
Making Best Use of Model Evaluations to Compute Sensitivity Indices
,”
Comput. Phys. Commun.
,
145
(
2
), pp.
280
297
.
You do not currently have access to this content.