Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article reports the observation made during the compressive fracture process of cementitious materials, which has been studied using nonlinear ultrasonic testing (NUT) and acoustic emission (AE) testing techniques. The generated higher harmonics were recorded at a specific time interval and normalized with respect to the peak amplitude of the fundamental wave. The AE-based damage index (D) was compared with the normalized second harmonic amplitude (X). The X parameter decreased to a minimum at failure load where the AE-based b-value also reached its minimum value. Another nonlinear ultrasonic testing, namely, sideband peak count index (SPC-I) showed a similar variation when correlated with X parameter. It is concluded that both the normalized second harmonic amplitude and the sideband peak count index can be used as an indicator of internal damage growth. A parallel may exist between AE-based damage index (D) and normalized second harmonic amplitude (X) and SPC-I for the damage growth monitoring in cementitious materials. Since SPC-I technique is much easier to implement in comparison to the higher harmonic generation (HHG) technique, it is concluded that the SPC-I can replace HHG for monitoring the damage growth in heterogeneous cementitious materials.

References

1.
Kundu
,
T.
,
2018
,
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
,
Springer Nature Swizerland AG
,
Cham
.
2.
Achenbach
,
J. D.
,
1973
,
Wave Propagation in Elastic Solids
,
North-Holland Publishing Company
,
Amsterdam
.
3.
Shah
,
A. A.
,
Ribakov
,
Y.
, and
Zhang
,
C.
,
2013
, “
Efficiency and Sensitivity of Linear and Non-Linear Ultrasonics to Identifying Micro and Macro-Scale Defects in Concrete
,”
Mater. Des.
,
50
, pp.
905
916
.
4.
Williams
,
C.
,
Borigo
,
C.
,
Rivière
,
J.
,
Lissenden
,
C. J.
, and
Shokouhi
,
P.
,
2022
, “
Nondestructive Evaluation of Fracture Toughness in 4130 Steel Using Nonlinear Ultrasonic Testing
,”
J. Nondestruct. Eval.
,
41
(
1
), pp.
1
12
.
5.
Jhang
,
K. Y.
,
Lissenden
,
C. J.
,
Solodov
,
I.
, and
Ohara
,
Y.
,
2021
,
Measurement of Nonlinear Ultrasonic Characteristics
, Springer Series in Measurement Science and Technology,
Springer
,
Singapore
.
6.
Park
,
S. H.
, and
Kundu
,
T.
,
2023
, “
A Modified Sideband Peak Count Based Nonlinear Ultrasonic Technique for Material Characterization
,”
Ultrasonics
,
128
, p.
106858
.
7.
Basu
,
S.
,
Thirumalaiselvi
,
A.
,
Sasmal
,
S.
, and
Kundu
,
T.
,
2021
, “
Nonlinear Ultrasonics-Based Technique for Monitoring Damage Progression in Reinforced Concrete Structures
,”
Ultrasonics
,
115
, p.
106472
.
8.
Kundu
,
T.
,
Eiras
,
J. N.
,
Li
,
W.
,
Liu
,
P.
,
Sohn
,
H.
, and
Payá
,
J.
,
2018
, “Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count.”
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
,
T.
Kundu
, ed., Springer, Cham, pp.
1
88
.
9.
Castellano
,
A.
,
Fraddosio
,
A.
,
Piccioni
,
M. D.
, and
Kundu
,
T.
,
2021
, “
Linear and Nonlinear Ultrasonic Techniques for Monitoring Stress-Induced Damages in Concrete
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
4
(
4
), p.
041001
.
10.
Kim
,
G.
,
Loreto
,
G.
,
Kim
,
J. Y.
,
Kurtis
,
K. E.
,
Wall
,
J. J.
, and
Jacobs
,
L. J.
,
2018
, “
In Situ Nonlinear Ultrasonic Technique for Monitoring Microcracking in Concrete Subjected to Creep and Cyclic Loading
,”
Ultrasonics
,
88
, pp.
64
71
.
11.
Grosse
,
C. U.
, and
Ohtsu
,
M.
,
2008
,
Acoustic Emission Testing: Basics for Research-Applications in Civil Engineering
,
Springer-Verlag
,
Berlin, Heidelberg
.
12.
Ohtsu
,
M.
,
2020
,
Acoustic Emission and Related Non-Destructive Evaluation Techniques in the Fracture Mechanics of Concrete
,
Woodhead Publishing
,
Duxford, OK
.
13.
Ohtsu
,
M.
,
Enoki
,
M.
, and
Mizutani
,
Y.
,
2016
,
Practical Acoustic Emission Testing
,
Springer
,
Tokyo
, pp.
5
34
.
14.
Carpinteri
,
A.
,
Lacidogna
,
G.
,
Corrado
,
M.
, and
Di Battista
,
E.
,
2016
, “
Cracking and Crackling in Concrete-Like Materials: A Dynamic Energy Balance
,”
Eng. Fract. Mech.
,
155
, pp.
130
144
.
15.
Okamoto
,
M. U. T.
, and
Ohtsu
,
M.
,
2011
, “
Damage of Reinforced Concrete Qualified by AE
,”
Concr. Res. Lett.
,
2
(
3
), pp.
286
289
.
16.
Castellano
,
A.
,
Fraddosio
,
A.
,
Kundu
,
T.
, and
Piccioni
,
M. D.
,
2022
, “
SPC Non-Linear Ultrasonic Technique for Detecting Adhesion Defects in FRCM Reinforcements for Masonry Constructions
,” Health Monitoring of Structural and Biological Systems XVI. SPIE, Long Beach, CA, Mar. 7–8, Vol. 12048, pp.
288
299
.
17.
Ongpeng
,
J. M. C.
,
Oreta
,
A. W. C.
,
Hirose
,
S.
, and
Nakahata
,
K.
,
2017
, “
Nonlinear Ultrasonic Investigation of Concrete With Varying Aggregate Size Under Uniaxial Compression Loading and Unloading
,”
J. Mater. Civ. Eng.
,
29
(
2
), pp.
1
7
.
18.
Shah
,
A. A.
, and
Ribakov
,
Y.
,
2010
, “
Effectiveness of Nonlinear Ultrasonic and Acoustic Emission Evaluation of Concrete With Distributed Damages
,”
Mater. Des.
,
31
(
8
), pp.
3777
3784
.
19.
Ogi
,
H.
,
Hirao
,
M.
, and
Aoki
,
S.
,
2001
, “
Noncontact Monitoring of Surface-Wave Nonlinearity for Predicting the Remaining Life of Fatigues Steels
,”
J. App. Phys.
,
90
(
1
), pp.
438
442
.
20.
Bungey
,
J. H.
, and
Grantham
,
M. G.
,
2006
,
Testing of Concrete in Structures: Fourth Edition
,
CRC Press
,
London
.
21.
Cox
,
S. J. D.
, and
Meredith
,
P. G.
,
1993
, “
Microcrack Formation and Material Softening in Rock Measured by Monitoring Acoustic Emissions
,”
Int. J. Rock Mech. Min. Sci.
,
30
(
1
), pp.
11
24
.
22.
Colombo
,
I. S.
,
Main
,
I. G.
, and
Forde
,
M. C.
,
2003
, “
Assessing Damage of Reinforced Concrete Beam Using “b-Value” Analysis of Acoustic Emission Signals
,”
J. Mater. Civ. Eng.
,
15
(
3
), pp.
280
286
.
23.
Rather
,
A. I.
,
Mirgal
,
P.
,
Banerjee
,
S.
, and
Laskar
,
A.
,
2023
, “
Application of Acoustic Emission as Damage Assessment Technique for Performance Evaluation of Concrete Structures: A Review
,”
Pract. Period. Struct. Des. Constr.
,
28
(
3
), p.
03123003
.
You do not currently have access to this content.