Abstract

This paper examines the effect of complex crack geometry on the J-resistance curves obtained by strain-based ductile tearing simulation of complex cracked tension (CC(T)) specimens. The damage model is determined by analyzing the results of a smooth bar tensile test and a compact tension (C(T)) specimen toughness test on an SA508 Gr.1a low-alloy steel at 316 °C. The validity of the damage model and simulation method is checked by comparing the fracture test data for two CC(T) specimen tests. To investigate the effect of the complex crack geometry on the crack growth profiles and J-resistance curves, two geometric parameters (namely, the through-wall crack length and the surface crack depth) are systematically varied. It is found that the J-resistance curves for the CC(T) specimens with various through-wall crack lengths and surface crack depths are consistently lower than the corresponding 1 T C(T) J-resistance curves. The effect of the through-wall crack length upon the J-resistance curve is found to be less significant than that of the surface crack depth. Moreover, the J-resistance curve decreases continuously with increasing surface crack depth.

References

1.
USNRC
,
1979
, “
Investigation and Evaluation of Stress-Corrosion Cracking in Piping of Light Water Reactor Plant
,” USNRC, Washington, DC, Report No.
NUREG-0531
.https://inis.iaea.org/search/search.aspx?orig_q=RN:10470641
2.
ASME Code Section XI Task Group for Piping Evaluation
,
1986
, “
Evaluation of Flaws in Austenitic Steel Piping
,” EPRI, Palo Alto, CA, Report No. NP-4690-SR.
3.
Rudland
,
D.
,
Shim
,
D. J.
,
Xu
,
H.
, and
Wilkowski
,
G.
,
2007
, “
Evaluation of Circumferential Indications in Pressurizer Nozzle Dissimilar Metal Welds at the Wolf Creek Power Plant
,” Engineering Mechanics Corporation of Columbus, Columbus, OH, Report No.
ML071560398
.https://www.nrc.gov/docs/ML0715/ML071560398.pdf
4.
Kramer
,
G.
, and
Papaspyropoulos
,
V.
,
1986
, “
An Assessment of Circumferentially Complex- Cracked Pipe Subjected to Bending
,” USNRC, Washington, DC, Report No. NUREG/CR-4687.
5.
Kramer
,
G.
, and
Papaspyropoulos
,
V.
,
1988
, “
A Study of the Initiation and Growth of Complex Cracks in Nuclear Piping Under Pure Bending
,” ASTM, West Conshohocken, PA, Standard No. STP 995V2.
6.
Wilkowski
,
G. M.
,
Olson
,
R. J.
, and
Scott
,
P. M.
,
1998
, “
State-of-the-Art Report on Piping Fracture Mechanics
,” USNRC, Washington, DC, Report No. NUREG/CR-6540/BMI-2196.
7.
Shim
,
D. J.
,
Wilkowski
,
G.
,
Kalyanam
,
S.
, and
Brust
,
F.
,
2012
, “
A Novel Fracture Specimen for Assessment of Circumferential Complex-Cracks in Pipes
,”
ASME
Paper No. PVP2012-78188.10.1115/PVP2012-78188
8.
Rudland
,
D.
,
Lukes
,
R.
,
Scott
,
P.
,
Olson
,
P.
,
Cox
,
A.
, and
Shim
,
D. J.
,
2012
, “
Dissimilar Metal Weld Pipe Fracture Testing: Analysis of Results and Their Implications
,”
ASME
Paper No. PVP2012-78140.10.1115/PVP2012-78140
9.
Shim
,
D. J.
,
Rudland
,
D.
, and
Brust
,
F.
,
2013
, “
Comparison of Through-Wall and Complex Crack Behaviors in Dissimilar Metal Weld Pipe Using Cohesive Zone Modeling
,”
ASME
Paper No. PVP2013-98041.10.1115/PVP2013-98041
10.
Kim
,
S. J.
,
Bae
,
K. D.
,
Ryu
,
H. W.
,
Kim
,
J. W.
,
Oh
,
Y. J.
, and
Kim
,
Y. J.
,
2020
, “
The Effect of Complex Crack Shape on Crack Driving Force and Crack Tip Stress Field: Experiment and FE Analyses
,”
Int. J. Pressure Vessel Piping
,
185
, p.
104135
.10.1016/j.ijpvp.2020.104135
11.
Kumar
,
V.
, and
German
,
M. D.
,
1988
, “
Elastic-Plastic Fracture Analysis of Through-Wall and Surface Flaws in Cylinder
,” EPRI, Palo Alto, CA, Report No. NP-5596.
12.
Rudland
,
D.
,
Benson
,
M.
, and
Shim
,
D. J.
,
2014
, “
Fracture Toughness Behavior of Complex Cracks in Dissimilar Metal Welds
,”
ASME
Paper No. PVP2014-28105.10.1115/PVP2014-28105
13.
ASTM,
2013
, “
Standard Test Method for Measurement of Fracture Toughness
,” ASTM,
West Conshohocken, PA, Standard No. E1820-13
.
14.
Kim
,
Y. J.
,
Oh
,
Y. J.
,
Kim
,
Y. J.
,
Kim
,
J. W.
, and
Park
,
H. B.
,
2020
, “
Instability Moment Predictions for Complex Through-Wall Cracked Pipes
,”
Int. J. Pressure Vessel Piping
,
179
, p.
103941
.10.1016/j.ijpvp.2019.103941
15.
Kim
,
Y. J.
,
Huh
,
N. S.
, and
Kim
,
Y. J.
,
2001
, “
Crack Opening Analysis of Complex Cracked Pipes
,”
Int. J. Fract.
,
111
(
1
), pp.
71
86
.10.1023/A:1010945514752
16.
Jeong
,
J. U.
,
Choi
,
J. B.
,
Huh
,
N. S.
, and
Kim
,
Y. J.
,
2016
, “
Stress Intensity Factor and Elastic Crack Opening Displacement Solutions of Complex Cracks in Pipe Using Elastic Finite-Element Analyses
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p.
011206
.10.1115/1.4031128
17.
Jeong
,
J. U.
,
Choi
,
J. B.
,
Kim
,
M. K.
,
Huh
,
N. S.
, and
Kim
,
Y. J.
,
2016
, “
Plastic Influence Functions for Calculating J-Integral of Complex-Cracks in Pipe
,”
Int. J. Pressure Vessel Piping
,
146
, pp.
11
21
.10.1016/j.ijpvp.2016.07.003
18.
Jeong
,
J. U.
,
Choi
,
J. B.
,
Huh
,
N. S.
,
Shim
,
D. J.
, and
Kim
,
Y. J.
,
2017
, “
Engineering Approach Based on Reference Stress Concept for Calculating J and Crack Opening Displacement of Complex-Cracked Pipes
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031206
.10.1115/1.4035082
19.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.10.1115/1.3601204
20.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.10.1016/0022-5096(69)90033-7
21.
Hancock
,
J. W.
, and
Brown
,
D. K.
,
1983
, “
On the Role of Strain and Stress State in Ductile Failure
,”
J. Mech. Phys. Solids
,
31
(
1
), pp.
1
24
.10.1016/0022-5096(83)90017-0
22.
Oh
,
C. S.
,
Kim
,
Y. J.
,
Baek
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2007
, “
A Phenomenological Model of Ductile Fracture for API X65 Steel
,”
Int. J. Mech. Sci.
,
49
(
12
), pp.
1399
1412
.10.1016/j.ijmecsci.2007.03.008
23.
Oh
,
C. S.
,
Kim
,
N. H.
,
Kim
,
Y. J.
,
Baek
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2011
, “
A Finite Element Ductile Failure Simulation Method Using Stress-Modified Fracture Strain Model
,”
Int. J. Fract. Mech.
,
78
(
1
), pp.
124
137
.10.1016/j.engfracmech.2010.10.004
24.
Kim
,
N. H.
,
Oh
,
C. S.
, and
Kim
,
Y. J.
,
2011
, “
A Numerical Method to Simulate Ductile Failure of Tensile Plates With Interacting Through-Wall Cracks
,”
Fatigue Fract. Eng. Mater.
,
34
(
3
), pp.
215
226
.10.1111/j.1460-2695.2010.01514.x
25.
Kim
,
N. H.
,
Oh
,
C. S.
,
Kim
,
Y. J.
,
Yoon
,
K. B.
, and
Ma
,
Y. H.
,
2011
, “
Comparison of Fracture Strain Based Ductile Failure Simulation With Experimental Results
,”
Int. J. Pressure Vessel Piping
,
88
(
10
), pp.
434
447
.10.1016/j.ijpvp.2011.07.006
26.
Kim
,
J. H.
,
Kim
,
N. H.
,
Kim
,
Y. J.
,
Hasegawa
,
K.
, and
Miyazaki
,
K.
,
2013
, “
Ductile Fracture Simulation of 304 Stainless Steel Pipes With Two Circumferential Surface Cracks
,”
Fatigue Fract. Eng. Mater.
,
36
(
10
), pp.
1067
1080
.10.1111/ffe.12072
27.
Bae
,
K. D.
,
Ryu
,
H. W.
,
Kim
,
Y. J.
, and
Kim
,
J. S.
,
2016
, “
Comparison of Ductile Tearing Simulation With Complex Cracked Pipe Test Data
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011203
.10.1115/1.4033771
28.
Kim
,
J. W.
,
Choi
,
M. R.
,
Oh
,
Y. J.
,
Park
,
H. B.
, and
Kim
,
K. S.
,
2015
, “
Effects of Specimen Size and Side-Groove on the Results of J-R Fracture Toughness Test for LBB Evaluation
,”
Trans. Korean Soc. Mech. Eng. A
,
39
(
7
), pp.
729
736
.10.3795/KSME-A.2015.39.7.729
29.
Dassault Systemes
,
2018
, “
ABAQUS Version 2018 User's Manual
,”
Dassault Systemes Simulia Corp
, Johnston, Rhode Island.
30.
Kim
,
J. H.
,
2013
, “
A Full Scaled Ductile Pipe Fracture Simulation Method Using Finite Elements Based on Element-Size-Dependent Critical Damage Model
,” Ph.D. thesis, Korea University, Seoul, Korea.
You do not currently have access to this content.