Abstract

Creep deformation behavior, creep strength property, and microstructural evolution during creep exposure were investigated on Super 304H steel for boiler tube. In the high stress and lower temperature regime, creep rupture strength of Super 304H steel is higher than that of SUS304H steel. The slope of stress versus time to rupture curve of Super 304H steel, however, becomes steeper with increase in creep exposure time and temperature, and the creep rupture strength of Super 304H steel becomes closer to that of SUS304H steel after the tens of thousands of hours at 700 °C and above. In the short-term, at 600 °C, creep rupture ductility increases with increase in creep rupture life. However, it tends to decrease after showing the maximum value and the creep rupture ductility decreases with increase in temperature. The complex shape of creep rate versus time curves, with two minima in creep rate, was observed at 600 °C. Several type precipitates of niobium carbonitride (Nb(C,N)), Z phase (NbCrN), and copper were observed in Super 304H steel, as well as M23C6 carbide and sigma phase observed in SUS304H steel. The change in slope of stress versus time to rupture curve is caused by disappearance of precipitation strengthening effect during creep exposure. Accuracy of creep rupture life evaluation was improved by stress range splitting method which takes into accounts of the change in slope of stress versus time to rupture curves was demonstrated.

References

1.
Masuyama
,
F.
,
2001
, “
History of Power Plants and Progress in Heat Resistant Steels
,”
ISIJ Int.
,
41
(
6
), pp.
612
625
.10.2355/isijinternational.41.612
2.
Sawaragi
,
Y.
, Otsuka, N.,
Ogawa
,
K.
,
Kato
,
S.
, and Hirano, S.,
1992
, “Development of the Economical 18-8 Stainless Steel (SUPER304H) Having High Elevated Temperature Strength for Fossil Fired Boilers,”
Sumitomo Search
,
48
, pp.
50
58
.
3.
Igarashi
,
M.
,
2004
,
18Cr-9Ni-3Cu-Nb-N Steel
,
Springer
,
Berlin, Heidelberg
, pp.
260
264
.
4.
Okada
,
H.
,
Igarashi
,
M.
,
Yamamoto
,
S.
,
Miyahara
,
O.
,
Iseda
,
A.
,
Komai
,
N.
, and
Masuyama
,
F.
,
2007
, “
Long-Term Service Experience With Advanced Austenitic Alloys in Eddystone Power Station
,”
Proceedings of CREEP8, Eight International Conference on Creep and Fatigue at Elevated Temperatures
, July 22–26, San Antonio, TX, CREEP2007-26561.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1060.3960&rep=rep1&type=pdf
5.
Kobayashi
,
S.
,
Murata
,
M.
,
Kamihira
,
K.
, and
Kimura
,
K.
,
2014
, “
The Degradation of Long-Term Creep Strength and Microstructure Evolution in Super304H
,”
Third International ECCC Conference, Creep & Fracture in High Temperature Components, Design & Life Assessment
, Rome, Italy, May 5–7, pp.
760
765
.
6.
Kimura
,
K.
,
Murata
,
M.
,
Kamihira
,
K.
, and
Kobayashi
,
S.
,
2016
, “
Creep Strength Property and Microstructural Evolution During Long-Term Creep of 18Cr-9Ni-3Cu-Nb-N (KA-SUS304J1HTB) Austenitic Steel
,”
Proceeding of APCFS2016
, Toyama, Japan, Sept. 19–22, pp.
265
266
.
7.
Morii
,
J.
,
Sato
,
F.
, and
Suzuki
,
K.
,
2018
, “
Microstructure of a Heat-Resistant Austenitic Steel After Long-Term Use as Ultra-Supercritical Boiler Tube
,”
J. Soc. Mater. Sci., Jpn.
,
67
(
8
), pp.
789
794
.10.2472/jsms.67.789
8.
Kimura
,
T.
,
Shioda
,
Y.
, and
Kubushiro
,
K.
,
2019
, “
Internal Pressure Creep Damage of KA-SUS304J1HTB
,”
J. Soc. Mater. Sci., Jpn.
,
68
(
2
), pp.
142
147
.10.2472/jsms.68.142
9.
Hashimoto
,
K.
,
Arisue
,
K.
,
Saito
,
N.
,
Komai
,
N.
,
Nagashima
,
E.
,
Tominaga
,
K.
, and
Fujita
,
M.
,
2019
, “
The Dominant Factors of Creep Rupture Strength of 18Cr-9Ni-3Cu-Nb-N Steel
,”
Proceedings of Joint EPRI-123HiMAT International Conference on Advances in High Temperature Materials
, Nagasaki, Japan, Oct. 21–24, pp.
655
664
.
10.
Pulsford
,
C.
,
Jepson
,
M. A. E.
,
Thomson
,
R. C.
,
Lolla
,
T.
, and
Siefert
,
J.
,
2019
, “
Characterisation of the Microstructural Evolution of Aged Super 304H (UNS30432) Advanced Austenitic Stainless Steel
,”
Proceedings of Joint EPRI-123HiMAT International Conference on Advances in High Temperature Materials
, Nagasaki, Japan, Oct. 21–24, pp.
703
714
.
11.
Lolla
,
T.
,
Siefert
,
J.
,
West
,
G.
, and
Gagliano
,
M.
,
2019
, “
A Study of Sigma Phase Evolution in Long-Term Creep Tested Super 304H Samples
,”
Proceedings Joint EPRI-123HiMAT International Conference on Advances in High Temperature Materials
, Nagasaki, Japan, Oct. 21–24, pp.
726
737
.
12.
National Institute for Materials Science
,
2018
, “
NIMS Creep Data Sheet, No. 56A
,” National Institute for Materials Science, Japan.
13.
National Institute for Materials Science
,
2016
, “
NIMS Creep Data Sheet, Metallographic Atlas of Long-Term Crept Materials, No. M-11
,” National Institute for Materials Science, Japan.
14.
National Institute for Materials Science
,
1986
, “
NIMS Creep Data Sheet, No. 4B
,” National Institute for Materials Science, Japan.
15.
Miyazaki
,
H.
,
Tanaka
,
H.
,
Murata
,
M.
, and
Abe
,
F.
,
2002
, “
Effect of Minor Elements on the Long-Term Creep Rupture Time of SUS 304 HTB Stainless Steel
,”
J. Jpn. Inst. Met.
,
66
(
12
), pp.
1278
1286
.10.2320/jinstmet1952.66.12_1278
16.
Brown
,
L. M.
, and
Ham
,
R. K.
,
1971
, “
Dislocation-Particle Interactions
,”
Strengthening Methods in Crystals
, eds.
A.
Kelly
, and
R. B.
Nicholson
,
Elsevier Publishing Company Limited
, Barking, Essex, UK, pp.
9
135
.
17.
Osamura
,
K.
,
Okuda
,
H.
,
Ochiai
,
S.
,
Takashima
,
M.
,
Asano
,
K.
,
Furusaka
,
M.
,
Kishida
,
K.
, and
Kurosawa
,
F.
,
1994
, “
Precipitation Hardening in Fe-Cu Binary and Quaternary Alloys
,”
ISIJ Int.
,
34
(
4
), pp.
359
365
.10.2355/isijinternational.34.359
18.
Holzer
,
I.
, and
Kozeschnik
,
E.
,
2010
, “
Computer Simulation of the Yield Strength Evolution in Cu-Precipitation Strengthened Ferritic Steel
,”
Mater. Sci. Eng., A
,
527
(
15
), pp.
3546
3551
.10.1016/j.msea.2010.02.032
19.
National Research Institute for Metals
,
1999
, “
Metallographic Atlas of Long-Term Crept Materials, NIMS Creep Data Sheet, No. M-1
,” National Research Institute for Metals, Japan.
20.
Kushima
,
H.
,
Kimura
,
K.
, and
Abe
,
F.
,
2002
, “
Long-Term Creep Strength Prediction of High Cr Ferritic Creep Resistant Steels
,”
Proceedings of Seventh Liege Conference, Materials for Advanced Power Engineering
, Liège, Belgium, pp.
1581
1590
.
21.
Kimura
,
K.
,
Sawada
,
K.
,
Kubo
,
K.
, and
Kushima
,
H.
,
2004
, “
Influence of Stress on Degradation and Life Prediction of High Strength Ferritic Steels
,”
Experience With Creep-Strength Enhanced Ferritic Steels and New and Emerging Computational Methods
, July 25–29, San Diego, CA, pp.
11
18
, Paper No. PVP2004-2566.10.1115/P VP2004-2566
22.
Kimura
,
K.
,
Tabuchi
,
M.
,
Takahashi
,
Y.
,
Yoshida
,
K.
, and
Yagi
,
K.
,
2011
, “
Long-Term Creep Strength and Strength Reduction Factor for Welded Joints of ASME Grades 91, 92 and 122 Type Steels
,”
Int. J. Microstruct. Mater. Prop.
,
6
(
1/2
), pp.
72
90
.10.1504/IJMMP.2011.040438
23.
Wilshire
,
B.
, and
Scharning
,
P. J.
,
2008
, “
A New Methodology for Analysis of Creep and Creep Fracture Data for 9-12% Chromium Steels
,”
Int. Mat. Rev.
,
53
(
2
), pp.
91
104
.10.1179/174328008X254349
24.
Wilshire
,
B.
,
Scharning
,
P. J.
, and
Hurst
,
R.
,
2009
, “
A New Approach to Creep Data Assessment
,”
Mat. Sci. Eng., A
,
510–511
, pp.
3
6
.10.1016/j.msea.2008.04.125
25.
KimuraMurata
,
K.
,
Kamihira
,
M. K.
, and
Tanaka
,
H.
,
2016
, “
Creep Deformation Property and Creep Life Evaluation of Type 316 L(N) Stainless Steel
,”
42nd MPA-Seminar
, MPA Stuttgart, Oct. 4, p.
5
.
You do not currently have access to this content.