Abstract

Ferritic steels, which are typically used for critical reactor components, including reactor pressure vessels (RPV), exhibit a temperature-dependent probability of cleavage fracture, termed ductile-to-brittle transition. The fracture process has been linked to the interaction between matrix plasticity and second-phase particles. Under high-enough loads, a competition exists between cleavage and ductile fracture, which results from particles rupturing to form microcracks or particles decohering to form microvoids, respectively. Currently, there is no sufficiently adequate model that can predict accurately the reduced probability of cleavage with increasing temperature and the associated increase of plastic deformation. In this work, failure probability has been estimated using a local approach to cleavage fracture incorporating the statistics of microcracks. It is shown that changes in the deformation material properties are not enough to capture the significant changes in fracture toughness. Instead, a correction to the fraction of particles converted to eligible for cleavage microcracks, with an exponential dependence on the plastic strains, is proposed. The proposed method is compared with previous corrections that incorporate the plastic strains, and its advantages are demonstrated. The method is developed for the RPV steel 22NiMoCr37 and using experimental data for a standard compact tension C(T) specimen. The proposed approach offers more accurate calculations of cleavage fracture toughness in the ductile-to-brittle transition regime using only a decoupled model, which is attractive for engineering practice.

References

1.
Knott
,
J.
,
2015
, “
Brittle Fracture in Structural Steels: Perspectives at Different Size-Scales
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
373
(
2038
), p. 20140126.10.1098/rsta.2014.0126
2.
IAEA
,
2010
, “
Review of Fuel Failures in Water Cooled Reactors
,”
IAEA
, Vienna, Austria, accessed Aug. 26, 2018, http://www.iaea.org/Publications/index.html
3.
Steele
,
L. E.
,
1975
, “
Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels
,” IAEA, Vienna, Austria, accessed July 30, 2018, http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/07/222/7222068.pdf
4.
Gurland
,
J.
,
1972
, “
Observations on the Fracture of Cementite Particles in a Spheroidized 1.05 % C Steel Deformed at Room Temperature
,”
Acta Metall.
,
20
(
5
), pp.
735
741
.10.1016/0001-6160(72)90102-2
5.
McMahon
,
C. J.
, and
Cohen
,
M.
,
1965
, “
Initiation of Cleavage in Polycrystalline Iron
,”
Acta Metall.
,
13
(
6
), pp.
591
604
.10.1016/0001-6160(65)90121-5
6.
Pineau
,
A.
,
2006
, “
Development of the Local Approach to Fracture Over the Past 25 Years: Theory and Applications
,”
Int. J. Fract.
,
138
(
1–4
), pp.
139
166
.10.1007/s10704-006-0035-1
7.
Beremin
,
F. M.
,
Pineau
,
A.
,
Mudry
,
F.
,
Devaux
,
J.-C.
,
D'Escatha
,
Y.
, and
Ledermann
,
P.
,
1983
, “
A Local Criterion for Cleavage Fracture of a Nuclear Pressure Vessel Steel
,”
Metall. Trans. A
,
14
(
11
), pp.
2277
2287
.10.1007/BF02663302
8.
Schmitt
,
W.
,
Sun
,
D. Z.
,
Bernauer
,
G.
, and
Nagel
,
G.
,
1998
, “
New Approaches to Improve the RPV Materials Data Base
,”
Nucl. Eng. Des.
,
183
(
1–2
), pp.
1
8
.10.1016/S0029-5493(98)00150-2
9.
Böhme
,
W.
,
Bernauer
,
G.
, and
Schmitt
,
W.
,
1999
, “
Scatter of a Ferritic Steel in the Transition Region Analyzed by Charpy Tests and Dynamic Tensile Tests
,”
Nucl. Eng. Des.
, 188(2), pp.
149
154
.10.1016/S0029-5493(99)00011-4
10.
Bernauer
,
G.
,
Brocks
,
W.
, and
Schmitt
,
W.
,
1999
, “
Modifications of the Beremin Model for Cleavage Fracture in the Transition Region of a Ferritic Steel
,”
Eng. Fract. Mech.
,
64
(
3
), pp.
305
325
.10.1016/S0013-7944(99)00076-4
11.
Tanguy
,
B.
,
Besson
,
J.
,
Piques
,
R.
, and
Pineau
,
A.
,
2005
, “
Ductile to Brittle Transition of an A508 Steel Characterized by Charpy Impact Test. Part II: Modeling of the Charpy Transition Curve
,”
Eng. Fract. Mech.
,
72
(
3
), pp.
413
434
.10.1016/j.engfracmech.2004.03.011
12.
Gao
,
X.
,
Ruggieri
,
C.
, and
Dodds
,
R. H.
, Jr
,
1998
, “
Calibration of Weibull Stress Parameters Using Fracture Toughness Data
,”
Int. J. Fract.
,
92
(
2
), pp.
175
200
.10.1023/A:1007521530191
13.
Zhao
,
X.
,
Lidbury
,
D.
,
da Fonseca
,
J. Q.
,
Sherry
,
A.
,
Neu
,
R.
,
Wallin
,
K.
,
Thompson
,
S. R.
, and
Dean
,
S. W.
,
2008
, “
Introducing Heterogeneity Into Brittle Fracture Modeling of a 22NiMoCr37 Ferritic Steel Ring Forging
,”
J. ASTM Int.
,
5
(
4
), p.
101562
.10.1520/JAI101562
14.
Kingman
,
J. F. C.
,
2002
,
Poisson Processes
,
Oxford University Press
,
New York
.
15.
Moller
,
J.
, and
Waagepetersen
,
R. P.
,
2003
,
Statistical Inference and Simulation for Spatial Point Processes
,
Chapman & Hall/CRC
, New York.
16.
Ruggieri
,
C.
,
Savioli
,
R. G.
, and
Dodds
,
R. H.
,
2015
, “
An Engineering Methodology for Constraint Corrections of Elastic–Plastic Fracture Toughness—Part II: Effects of Specimen Geometry and Plastic Strain on Cleavage Fracture Predictions
,”
Eng. Fract. Mech.
,
146
, pp.
185
209
.10.1016/j.engfracmech.2015.06.087
17.
Ruggieri
,
C.
, and
Dodds
,
R. H.
,
2015
, “
An Engineering Methodology for Constraint Corrections of Elastic-Plastic Fracture toughness-Part I: A Review on Probabilistic Models and Exploration of Plastic Strain Effects
,”
Eng. Fract. Mech.
,
134
, pp.
368
390
.10.1016/j.engfracmech.2014.12.015
18.
Lindley
,
T. C.
,
Oates
,
G.
, and
Richards
,
C. E.
,
1970
, “
A Critical of Carbide Cracking Mechanisms in Ferride/Carbide Aggregates
,”
Acta Metall.
,
18
(
11
), pp.
1127
1136
.10.1016/0001-6160(70)90103-3
19.
Brindley
,
B. J.
,
1970
, “
The Effect of Dynamic Strain-Ageing on the Ductile Fracture Process in Mild Steel
,”
Acta Metall.
,
18
(
3
), pp.
325
329
.10.1016/0001-6160(70)90147-1
20.
Gao
,
X.
,
Zhang
,
G.
, and
Srivatsan
,
T. S.
,
2005
, “
Prediction of Cleavage Fracture in Ferritic Steels: A Modified Weibull Stress Model
,”
Mater. Sci. Eng. A
,
394
(
1–2
), pp.
210
219
.10.1016/j.msea.2004.11.035
21.
Kroon
,
M.
, and
Faleskog
,
J.
,
2002
, “
A Probabilistic Model for Cleavage Fracture With a Length Scale-Influence of Material Parameters and Constraint
,”
Int. J. Fract.
,
118
(
2
), pp.
99
118
.10.1023/A:1022864513654
22.
Bordet
,
S. R.
,
Karstensen
,
A. D.
,
Knowles
,
D. M.
, and
Wiesner
,
C. S.
,
2005
, “
A New Statistical Local Criterion for Cleavage Fracture in Steel. Part I: Model Presentation
,”
Eng. Fract. Mech.
,
72
(
3
), pp.
435
452
.10.1016/j.engfracmech.2004.02.009
23.
Heerens
,
J.
, and
Hellmann
,
D.
,
2002
, “
Development of the Euro Fracture Toughness Dataset
,”
Eng. Fract. Mech.
,
69
(
4
), pp.
421
449
.10.1016/S0013-7944(01)00067-4
24.
James
,
P.
,
Ford
,
M.
, and
Jivkov
,
A. P.
,
2014
, “
A Novel Particle Failure Criterion for Cleavage Fracture Modelling Allowing Measured Brittle Particle Distributions
,”
Eng. Fract. Mech.
,
121–122
, pp.
98
115
.10.1016/j.engfracmech.2014.03.005
25.
Jivkov
,
A. P.
,
Ford
,
M.
,
Yankova
,
M.
,
Sarzosa
,
D.
, and
Ruggieri
,
C.
,
2019
, “
Progress and Challenges With Local Approaches to Cleavage Fracture
,”
Procedia Struct. Integr.
,
23
, pp.
39
44
.10.1016/j.prostr.2020.01.060
26.
ASTM
,
2017
, “Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials 1,”
ASTM
, West Conshohocken, PA, Standard No.
E399-17
.https://www.astm.org/e0399-17.html
You do not currently have access to this content.