Abstract

Due to the development of gas and oil exploration into the deep sea, the effective tensile capacity provided by armored steel wire will decrease rapidly with the increase of the weight of umbilical cables. In this paper, two designs of lightweight umbilical cables were studied in full consideration of the geometric characteristics, and the mechanical properties were investigated under tension, bending, and torsion. The contact and friction between the components of the umbilical cables were also included in the model. Three cases are presented for validation from theoretical and finite element methods. The discussion on variables was carried out from the views of friction coefficient and helically wound angle. Compared with the steel tube umbilical model, the nonmetallic armored umbilical cable shows higher tensile strength and more flexibility. With the increase of friction coefficient, the stiffness of umbilical cable models doesn't change much. The helically wound angle has a great influence on the tensile stiffness and bending stiffness but little effect on the torsional rigidity. The proposed lightweight model can be applicable to 6000 m water depth. This research can benefit the design of umbilical cables to achieve the goal of high tensile capacity in deepwater applications.

References

1.
Dai
,
T.
,
Sævik
,
S.
, and
Ye
,
N.
,
2020
, “
Experimental and Numerical Studies on Dynamic Stress and Curvature in Steel Tube Umbilicals
,”
Marine Struct.
,
72
, p.
102724
.10.1016/j.marstruc.2020.102724
2.
Ren
,
S.
,
Tang
,
W.
,
Kang
,
Z.
, and
Geng
,
H.
,
2020
, “
Numerical Study on the Axial-Torsional Response of an Unbonded Flexible Riser With Damaged Tensile Armor Wires
,”
Appl. Ocean Res.
,
97
, p.
102045
.10.1016/j.apor.2019.102045
3.
Li
,
X.
, and
Vaz
,
M. A.
,
2019
, “
Analytical Model for Lateral Instability of Quasi-Rectangular or Circular Armor Wires in Flexible Pipes and Umbilicals
,”
Ocean Eng.
,
190
, p.
106423
.10.1016/j.oceaneng.2019.106423
4.
Albino
,
J. C. R.
,
Almeida
,
C. A.
,
Menezes
,
I. F. M.
, and
Paulino
,
G. H.
,
2018
, “
Co-Rotational 3D Beam Element for Nonlinear Dynamic Analysis of Risers Manufactured With Functionally Graded Materials (FGMs)
,”
Eng. Struct.
,
173
, pp.
283
299
.10.1016/j.engstruct.2018.05.092
5.
Reda
,
A.
,
Howard
,
I. M.
,
Forbes
,
G. L.
,
Sultan
,
I. A.
, and
McKee
,
K. K.
,
2017
, “
Design and Installation of Subsea Cable, Pipeline and Umbilical Crossing Interfaces
,”
Eng. Fail. Anal.
,
81
, pp.
193
203
.10.1016/j.engfailanal.2017.07.001
6.
Lentz
,
S.
,
2016
, “
8 - New Applications for Submarine Cables
,”
Undersea Fiber Communication Systems
, 2nd ed.,
Academic Press
, Cambridge, MA, J.
Chesnoy
, ed., pp.
301
–3
40
.10.1016/B978-0-12-804269-4.00008-8
7.
Drumond
,
G. P.
,
Pasqualino
,
I. P.
,
Pinheiro
,
B. C.
, and
Estefen
,
S. F.
,
2018
, “
Pipelines, Risers and Umbilicals Failures: A Literature Review
,”
Ocean Eng.
,
148
, pp.
412
425
.10.1016/j.oceaneng.2017.11.035
8.
Cuamatzi-Melendez
,
R.
,
Castillo-Hernández
,
O.
,
Vázquez-Hernández
,
A. O.
,
Albiter
,
A.
, and
Vaz
,
M.
,
2015
, “
Finite Element Modeling of Burst Failure in Unbonded Flexible Risers
,”
Eng. Struct.
,
87
, pp.
58
69
.10.1016/j.engstruct.2015.01.021
9.
Vantadori
,
S.
,
Carpinteri
,
A.
, and
Iturrioz
,
I.
,
2019
, “
Fretting Failure of a Pressure Armour in an Unbonded Flexible Riser
,”
Int. J. Fatigue
,
128
, p.
105203
.10.1016/j.ijfatigue.2019.105203
10.
Gao
,
L.
,
Liu
,
T.
,
Shao
,
Q.
,
Fantuzzi
,
N.
, and
Chen
,
W.
,
2020
, “
Burst Pressure of Steel Reinforced Flexible Pipe
,”
Marine Struct.
,
71
, p.
102704
.10.1016/j.marstruc.2019.102704
11.
Ruan
,
W.
,
Bai
,
Y.
, and
Yuan
,
S.
,
2017
, “
Dynamic Analysis of Unbonded Flexible Pipe With Bend Stiffener Constraint and Bending Hysteretic Behavior
,”
Ocean Eng.
,
130
, pp.
583
596
.10.1016/j.oceaneng.2016.12.019
12.
Zhou
,
Y.
, and
Vaz
,
M. A.
,
2017
, “
A Quasi-Linear Method for Frictional Model in Helical Layers of Bent Flexible Risers
,”
Marine Struct.
,
51
, pp.
152
173
.10.1016/j.marstruc.2016.10.004
13.
Yang, X., Sun, L., and Li, H., 2015, “Analysis of Tensile Armor Layer Structural Behaviors in Flexible Pipe,” J. Ship Mech., 19(4), pp.
436
446
.
14.
O'Halloran
,
S. M.
,
Connaire
,
A. D.
,
Harte
,
A. M.
, and
Leen
,
S. B.
,
2020
, “
A Global-Local Fretting Analysis Methodology and Design Study for the Pressure Armour Layer of Dynamic Flexible Marine Risers
,”
Tribol. Int.
,
142
, p.
105967
.10.1016/j.triboint.2019.105967
15.
Cao
,
Y.
,
Wei
,
Y.
,
He
,
W.
,
Hu
,
X.
,
Tian
,
H.
, and
Wu
,
K.
,
2020
, “
Sensitivity Analysis of Key Parameters on Static Stiffness of the Power Umbilical
,”
Ocean Eng.
,
200
, p.
107055
.10.1016/j.oceaneng.2020.107055
16.
Zhang
,
M.
,
Chen
,
X.
,
Fu
,
S.
,
Guo
,
Y.
, and
Ma
,
L.
,
2015
, “
Theoretical and Numerical Analysis of Bending Behavior of Unbonded Flexible Risers
,”
Marine Struct.
,
44
, pp.
311
325
.10.1016/j.marstruc.2015.10.001
17.
de Sousa
,
J. R. M.
,
Magluta
,
C.
,
Roitman
,
N.
, and
Campello
,
G. C.
,
2018
, “
On the Extensional-Torsional Response of a Flexible Pipe With Damaged Tensile Armor Wires
,”
Ocean Eng.
,
161
, pp.
350
383
.10.1016/j.oceaneng.2018.04.091
18.
Tang
,
L.
,
He
,
W.
,
Zhu
,
X.
, and
Zhou
,
Y.
,
2019
, “
Mechanical Analysis of un-Bonded Flexible Pipe Tensile Armor Under Combined Loads
,”
Int. J. Press. Vessels Pip.
,
171
, pp.
217
223
.10.1016/j.ijpvp.2019.02.015
19.
Bai
,
Y.
,
Lu
,
Y.
, and
Cheng
,
P.
,
2015
, “
Analytical Prediction of Umbilical Behavior Under Combined Tension and Internal Pressure
,”
Ocean Eng.
,
109
, pp.
135
144
.10.1016/j.oceaneng.2015.08.067
20.
Bai
,
Y.
,
Liu
,
T.
,
Ruan
,
W.
, and
Chen
,
W.
,
2017
, “
Mechanical Behavior of Metallic Strip Flexible Pipe Subjected to Tension
,”
Compos. Struct.
,
170
, pp.
1
10
.10.1016/j.compstruct.2017.02.044
21.
Pham
,
D.
,
Sridhar
,
N.
,
Qian
,
X.
,
Sobey
,
A. J.
,
Achintha
,
M.
, and
Shenoi
,
A.
,
2016
, “
A Review on Design, Manufacture and Mechanics of Composite Risers
,”
Ocean Eng.
,
112
, pp.
82
96
.10.1016/j.oceaneng.2015.12.004
22.
de Paiva
,
L. F.
, and
Vaz
,
M. A.
,
2017
, “
An Empirical Model for Flexible Pipe Armor Wire Lateral Buckling Failure Load
,”
Appl. Ocean Res.
,
66
, pp.
46
54
.10.1016/j.apor.2017.05.004
23.
Cuamatzi-Melendez
,
R.
,
Castillo-Hernández
,
O.
,
Vázquez-Hernández
,
A. O.
, and
Vaz
,
M. A.
,
2017
, “
Finite Element and Theoretical Analyses of Bisymmetric Collapses in Flexible Risers for Deepwaters Developments
,”
Ocean Eng.
,
140
, pp.
195
208
.10.1016/j.oceaneng.2017.05.032
24.
O Halloran
,
S. M.
,
Connaire
,
A. D.
,
Harte
,
A. M.
, and
Leen
,
S. B.
,
2016
, “
Modelling of Fretting in the Pressure Armour Layer of Flexible Marine Risers
,”
Tribol. Int.
, 100, pp.
306
316
.
10.1016/j.triboint.2016.02.040
25.
Alexander
,
C.
,
2011
, “
Assessing the Use of Composite Materials in Reinforcing Offshore Risers and Pipelines
,”
ASME
Paper No. OMAE2011-49425.10.1115/OMAE2011-49425
26.
Jiang
,
K.
,
Xie
,
R.
, and
Yun
,
H.
,
2020
, “
Lightweight Drill Pipe Based on Composite Carbon Fiber Material
,”
J. Phys.: Conf. Ser.
,
1549
(
3
), p.
032113
.10.1088/1742-6596/1549/3/032113
27.
Liu
,
Y.
,
Zwingmann
,
B.
, and
Schlaich
,
M.
,
2015
, “
Carbon Fiber Reinforced Polymer for Cable Structures—A Review
,”
Polymers
,
7
(
10
), pp.
2078
2099
.10.3390/polym7101501
28.
Liu
,
Q.
,
Xue
,
H.
,
Tang
,
W.
, and
Yuan
,
Y.
,
2020
, “
Theoretical and Numerical Methods to Predict the Behaviour of Unbonded Flexible Riser With Composite Armour Layers Subjected to Axial Tension
,”
Ocean Eng.
,
199
, p.
107038
.10.1016/j.oceaneng.2020.107038
29.
Gautam
,
M.
,
Katnam
,
K. B.
,
Potluri
,
P.
,
Jha
,
V.
,
Latto
,
J.
, and
Dodds
,
N.
,
2017
, “
Hybrid Composite Tensile Armour Wires in Flexible Risers: A Multi-Scale Model
,”
Compos. Struct.
,
162
, pp.
13
27
.10.1016/j.compstruct.2016.11.090
30.
Chan
,
P. H.
,
Tshai
,
K. Y.
,
Johnson
,
M.
, and
Li
,
S.
,
2015
, “
Finite Element Analysis (FEA) Modelling of Fiber-Reinforced Polymer (FRP) Repair Inoffshore Risers
,”
Rehabilitation of Pipelines Using Fiber-reinforced Polymer (FRP) Composites
, Woodhead Publishing, Sawston, UK, pp.
177
210
. 10.1016/B978-0-85709-684-5.00009-6
31.
Zhou
,
C.
,
Zhang
,
L.
,
Kang
,
Y.
,
Qu
,
Y.
,
Huang
,
K.
, and
Zhang
,
D.
, “
The Study of a Possible Strengthened Structure Implanting Into the Hoses in Umbilical for Deep Water Application
,”
ASME
Paper No. OMAE2016-54765.10.1115/OMAE2016-54765
32.
Hastie
,
J. C.
,
Kashtalyan
,
M.
, and
Guz
,
I. A.
,
2019
, “
Failure Analysis of Thermoplastic Composite Pipe (TCP) Under Combined Pressure, Tension and Thermal Gradient for an Offshore Riser Application
,”
Int. J. Press. Vessels Pip.
,
178
, p.
103998
.10.1016/j.ijpvp.2019.103998
33.
The Vu
,
M.
,
Choi
,
H.
,
Kang
,
J.
,
Ji
,
D.
, and
Jeong
,
S.
,
2017
, “
A Study on Hovering Motion of the Underwater Vehicle With Umbilical Cable
,”
Ocean Eng.
,
135
, pp.
137
157
.10.1016/j.oceaneng.2017.02.035
34.
Yang
,
Z.
,
Yan
,
J.
,
Sævik
,
S.
,
Lu
,
Q.
,
Ye
,
N.
,
Chen
,
J.
, and
Yue
,
Q.
,
2021
, “
Integrated Optimisation Design of a Dynamic Umbilical Based on an Approximate Model
,”
Marine Struct.
,
78
, p.
102995
.10.1016/j.marstruc.2021.102995
35.
Zhang
,
Y.
,
Cheng
,
N. Y.
,
Zhao
,
Y.
, and
Zhang
,
P.
, “
Analysis of Mechanical Properties of Carbon Fiber Reinforced Spiral Rod in Umbilical
,”
ASME
Paper No. OMAE2019-95988.10.1115/OMAE2019-95988
36.
Zhou
,
C.
,
Huang
,
Z.
,
Kang
,
Y.
,
Zhang
,
D.
,
Ye
,
N.
, and
Sævik
,
S.
,
2017
, “
The Study of a New Concept of Flexible Pipe With Carbon Fiber/Epoxy Reinforced Inner Sheath
,”
ASME
Paper No. OMAE2017-61069.10.1115/OMAE2017-61069
37.
Zhao
,
Y.
,
2018
,
Analysis and Research on Mechanical Properties of Spiral Carbon Fiber Reinforced Bars of Umbilical
,
China University of Petroleum
, Beijing, China.
38.
Kumar
,
K.
, and
Botsis
,
J.
,
2001
, “
Contact Stresses in Multilayered Strands Under Tension and Torsion
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
432
440
.10.1115/1.1355777
39.
Costello
,
G. A.
,
1997
,
Theory of Wire Rope
,
Springer Science & Business Media, Berlin.
40.
Knapp
,
R. H.
,
1981
, “
Torque and Stress Balanced Design of Helically Armored Cables
,”
J. Eng. Ind.
,
103
(
1
), pp.
61
66
.10.1115/1.3184460
41.
Meng
,
Y.
,
Xu
,
X.
, and
Zhao
,
M.
,
2020
, “
Dynamics Calculation of Complex Deep-Sea Cable System Based on Hybrid Optimization Algorithm
,”
Ocean Eng.
,
200
, p.
107041
.10.1016/j.oceaneng.2020.107041
42.
Da Silva Gomes
,
S.
, and
Pinheiro Gomes
,
S. C.
,
2021
, “
A New Dynamic Model of Towing Cables
,”
Ocean Eng.
,
220
, p.
107653
.10.1016/j.oceaneng.2020.107653
You do not currently have access to this content.