Abstract

For decades, fluidelastic instability (FEI) has been known to cause dramatic mechanical failures in tube bundles. Therefore, it has been extensively studied to mitigate its catastrophic consequences. Most of these studies were conducted in controlled experiments where significant simplifications to the geometry and flow conditions were utilized. One of these simplifications is the assumption that all tubes have the same dynamic characteristics. However, in steam generators with U-bend tube configuration, the natural frequencies of tubes are nonuniform due to manufacturing tolerances and tubes' curvature in the U-bend region. Thus, this investigation aims to understand the rule of frequency variation (detuning) on FEI in two-phase flow. This includes investigating the effect of detuning on transverse and streamwise FEI for air–water mixture flow. The role of FEI damping and stiffness couplings was investigated over the entire range of air void fraction, or equivalently, the mass-damping parameter. It was found that frequency detuning could elevate the stability threshold caused by either coupling at high air void fraction in the case of transverse FEI. Furthermore, the frequency detuning had a marginal effect on the stability threshold for water flow. It was observed that the mass-damping parameter has a critical impact on FEI under detuning conditions.

References

1.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
1991
, “
Fluidelastic Instability of Heat Exchanger Tube Bundles: Review and Design Recommendations
,”
ASME J. Pressure Vessel Technol.
,
113
(
2
), pp.
242
256
.10.1115/1.2928752
2.
Weaver
,
D. S.
,
Ziada
,
S.
,
Au-Yang
,
M. K.
,
Chen
,
S. S.
,
Paı¨Doussis
,
M. P.
, and
Pettigrew
,
M. J.
,
2000
, “
Flow-Induced Vibrations in Power and Process Plant Components - Progress and Prospects
,”
ASME J. Pressure Vessel Technol.
,
122
(
3
), pp.
339
348
.10.1115/1.556190
3.
Ziada
,
S.
,
Hassan
,
M.
, and
Gelbe
,
H.
,
2018
,
Vibrations in Heat Exchanger Tube Bundles,” VDI-Wärmeatlas: Fachlicher Träger VDI-Gesellschaft Verfahrenstechnik Und Chemieingenieurwesen
,
Springer
,
Berlin Heidelberg
, pp.
1
43
.
4.
Païdoussis
,
M. P.
,
1983
, “
A Review of Flow-Induced Vibrations in Reactors and Reactor Components
,”
Nucl. Eng. Des.
,
74
(
1
), pp.
31
60
.10.1016/0029-5493(83)90138-3
5.
Chen
,
S. S.
,
1983
, “
Instability Mechanisms and Stability Criteria of a Group of Circular Cylinders Subjected to Cross-Flow. Part I: Theory
,”
J. Vib. Acoust. Stress Reliab. Des.
,
105
(
1
), pp.
51
58
.10.1115/1.3269066
6.
Connors
,
H. J.
,
1970
, “
Fluidelastic Vibration of Tube Arrays Excited by Cross Flow
,”
ASME Symp. Flow-Induced Vib. Heat Exch. Winter Annu. Meet., pp. 42–47.
7.
Blevins
,
R. D.
,
1977
,
Flow-Induced Vibration
, Vol.
1
,
Van Nostrand Reinhold Co
,
New York
, p.
377
.
8.
Chen
,
S. S.
, and
Jendrzejcyk
,
J. A.
,
1981
, “
Experiments on Fluid Elastic Instability in Tube Banks Subjected to Liquid Cross Flow
,”
J. Sound Vib.
,
78
(
3
), pp.
355
381
.10.1016/S0022-460X(81)80145-9
9.
Weaver
,
D. S.
, and
Koroyannakis
,
D.
,
1983
, “
Flow-Induced Vibrations of Heat Exchanger U-Tubes: A Simulation to Study the Effects of Asymmetric Stiffness
,”
ASME Vib. Acoust. Stress, and Reliab.
,
105
(
1
), pp.
67
75
.10.1115/1.3269069
10.
Tanaka
,
H.
, and
Takahara
,
S.
,
1981
, “
Fluid Elastic Vibration of Tube Array in Cross Flow
,”
J. Sound Vib.
,
77
(
1
), pp.
19
37
.10.1016/S0022-460X(81)80005-3
11.
Cheng
,
B.
,
1994
,
The Mechanisms Underlying Flow-Induced Instability of Cylinder Arrays in Cross-Flow: An Investigation of System Parameters
,
McGill University
, Montreal, QC, Canada.
12.
Price
,
S. J.
, and
Kuran
,
S.
,
1991
, “
Fluidelastic Stability of a Rotated square Array With Multiple Flexible Cylinders, Subject to Cross-Flow
,”
J. Fluids Struct.
,
5
(
5
), pp.
551
572
.10.1016/S0889-9746(05)80005-2
13.
Olala
,
S.
, and
Mureithi
,
N. W.
,
2016
, “
Prediction of Streamwise Fluidelastic Instability of a Tube Array in Two-Phase Flow and Effect of Frequency Detuning
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031301
.10.1115/1.4034467
14.
Zuber
,
N.
, and
Findlay
,
J. A.
,
1965
, “
Average Volumetric Concentration in Two-Phase Flow Systems
,”
ASME J. Heat Transfer-Trans. ASME
,
87
(
4
), pp.
453
468
.10.1115/1.3689137
15.
Hibiki
,
T.
, and
Ishii
,
M.
,
2003
, “
One-Dimensional Drift–Flux Model for Two-Phase Flow in a Large Diameter Pipe
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1773
1790
.10.1016/S0017-9310(02)00473-8
16.
Chen
,
S. S.
,
1987
, “
A General Theory for Dynamic Instability of Tube Arrays in Crossflow
,”
J. Fluids Struct.
,
1
(
1
), pp.
35
53
.10.1016/S0889-9746(87)90170-8
17.
Sadek
,
O.
,
Mohany
,
A.
, and
Hassan
,
M.
,
2018
, “
Numerical Investigation of the Cross Flow Fluidelastic Forces of Two-Phase Flow in Tube Bundle
,”
J. Fluids Struct.
,
79
, pp.
171
186
.10.1016/j.jfluidstructs.2017.11.009
18.
Sadek
,
O.
,
Mohany
,
A.
, and
Hassan
,
M.
,
2020
, “
Numerical Simulation of Streamwise Fluidelastic Instability of Tube Bundles Subjected to Two-Phase Cross Flow
,”
J. Fluids Struct.
,
92
, p.
102816
.10.1016/j.jfluidstructs.2019.102816
19.
de Pedro
,
B.
,
Parrondo
,
J.
,
Meskell
,
C.
, and
Oro
,
J. F.
,
2016
, “
CFD Modelling of the Cross-Flow Through Normal Triangular Tube Arrays With One Tube Undergoing Forced Vibrations or Fluidelastic Instability
,”
J. Fluids Struct.
,
64
, pp.
67
86
.10.1016/j.jfluidstructs.2016.04.006
20.
Zdravkovich
,
M. M.
, and
Stonebanks
,
K. L.
,
1990
, “
Intrinsically Nonuniform and Metastable flow in and Behind Tube Arrays
,”
J. Fluids Struct.
,
4
(
3
), pp.
305
319
.10.1016/S0889-9746(05)80017-9
21.
Sawadogo
,
T.
, and
Mureithi
,
N.
,
2014
, “
Fluidelastic Instability Study in a Rotated Triangular Tube Array Subject to Two-Phase Cross-Flow. Part I: Fluid Force Measurements and Time Delay Extraction
,”
J. Fluids Struct.
,
49
, pp.
1
15
.10.1016/j.jfluidstructs.2014.02.004
22.
Olala
,
S.
, and
Mureithi
,
N. W.
,
2015
, “
Streamwise Dynamics of a Tube Array Subjected to Two-Phase Cross-Flows
,”
ASME
Paper No. PVP2015-45714.10.1115/P VP2015-45714
23.
Inada
,
F.
,
Kawamura
,
K.
, and
Yasuo
,
A.
,
1996
, “
Fluid-Elastic Force Measurements Acting on a Tube Bundle in Two-Phase Cross Flow
,”
Proceedings of ASME 1996 PVP Conference
, Montreal, QC, Canada, July 21–26, PVP-Volume 328, pp. 81–87.https://www.osti.gov/biblio/403381-fluid-elastic-force-measurements-acting-tube-bundle-twophase-cross-flow
24.
Hassan
,
M.
, and
Mohany
,
A.
,
2016
, “
Simulations of Fluidelastic Forces and Fretting Wear in U-Bend Tube Bundles of Steam Generators: Effect of Tube-Support Conditions
,”
Wind Struct.
,
23
(
2
), pp.
157
169
.10.12989/was.2016.23.2.157
25.
Elhelaly
,
A.
,
Hassan
,
M.
,
Mohany
,
A.
, and
Eid Moussa
,
S.
,
2020
, “
Effect of the Flow Approach Angle on the Dynamics of Loosely-Supported Tube Arrays
,”
Nucl. Eng. Des.
,
368
, p.
110802
.10.1016/j.nucengdes.2020.110802
26.
Hassan
,
M.
,
Gerber
,
A.
, and
Omar
,
H.
,
2010
, “
Numerical Estimation of Fluidelastic Instability in Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041307
.10.1115/1.4002112
27.
Hassan
,
M.
, and
Weaver
,
D. S.
,
2016
, “
Modeling of Streamwise and Transverse Fluidelastic Instability in Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
138
(
5
), p.
051304
.10.1115/1.4032817
28.
Mureithi
,
N. W.
,
Zhang
,
C.
,
Ruël
,
M.
, and
Pettigrew
,
M. J.
,
2005
, “
Fluidelastic Instability Tests on an Array of Tubes Preferentially Flexible in the Flow Direction
,”
J. Fluids Struct.
,
21
(
1
), pp.
75
87
.10.1016/j.jfluidstructs.2005.03.010
29.
Nakamura
,
T.
,
Fujita
,
Y.
, and
Sumitani
,
T.
,
2014
, “
Study on in-Flow Fluidelastic Instability of Triangular Tube Arrays Subjected to Air Cross Flow
,”
ASME J. Pressure Vessel Technol.
,
136
(
5
), p.
051310
.10.1115/1.4027618
30.
Violette
,
R.
,
Pettigrew
,
M. J.
, and
Mureithi
,
N. W.
,
2006
, “
Fluidelastic Instability of an Array of Tubes Preferentially Flexible in the Flow Direction Subjected to Two-Phase Cross Flow
,”
ASME J. Pressure Vessel Technol.
,
128
(
1
), pp.
148
159
.10.1115/1.2138064
You do not currently have access to this content.