Abstract

In this work, the hydraulic bursting method was used to investigate the bursting failure of aluminum alloy as-formed T-shaped tube by hydroforming, which consisted of the rupture region and bursting pressure. The bursting pressure was calculated by theoretical formula and two finite element models of T-shaped tubes with uniform thickness and hydroforming thickness were established. The hydraulic bursting failure simulation and experiment was carried out. In the simulation results, the failure directions of T-shaped tubes with uniform thickness were along the circumferential direction, while the failure directions of T-shaped tubes with hydroforming thickness were along axis of the main tube. Through stress analysis, the allowable circumferential film stress was about 1/2 of the allowable axial film stress, which indicated that the rupture failure should be along axis of the main tube. The failure location appeared at the shoulder. The fractured morphology was observed by scanning electron microscopy (SEM). A large number of equiaxed dimples and secondary phase particles appeared in the failure location. The experimental results were consistent with the simulation results of the as-formed T-shaped tube by hydroforming. Finally, the accuracy of the bursting pressure formula was evaluated according to the experimental results.

References

1.
Song
,
Y.
,
Dai
,
D.
,
Geng
,
P.
, and
Hua
,
L.
,
2017
, “
Formability of Aluminum Alloy Thin-Walled Cylinder Parts by Servo Hot Stamping
,”
Procedia Eng.
,
207
, pp.
741
746
.10.1016/j.proeng.2017.10.822
2.
Abrantes
,
J. P.
,
de Lima
,
C. E. C.
, and
Batalha
,
G. F.
,
2006
, “
Numerical Simulation of an Aluminum Alloy Tube Hydroforming
,”
J. Mater Process Tech
,
179
(
1–3
), pp.
67
73
.10.1016/j.jmatprotec.2006.03.069
3.
Ahmetoglu
,
M.
, and
Altan
,
T.
,
2000
, “
Tube Hydroforming: State-of-the-Art and Future Trends
,”
J. Mater. Process Tech.
,
98
(
1
), pp.
25
33
.10.1016/S0924-0136(99)00302-7
4.
Manabe
,
K.
, and
Amino
,
M.
,
2002
, “
Effects of Process Parameters and Material Properties on Deformation Process in Tube Hydroforming
,”
J. Mater. Process Tech.
,
123
(
2
), pp.
285
291
.10.1016/S0924-0136(02)00094-8
5.
Manabe
,
K.
,
Chen
,
X.
, and
Kobayashi
,
D.
,
2014
, “
Virtual Fuzzy In-Process Control of Y-Shape Tube Hydroforming With Different Branch Top Shapes
,”
AIP Conf. Proc.
,
1618
(
1
), pp.
307
310
.10.1063/1.4897735
6.
Yuan
,
S. J.
,
He
,
Z. B.
,
Liu
,
G.
,
Wang
,
X. S.
, and
Han
,
C.
,
2011
, “
New Developments in Theory and Processes of Internal High Pressure Forming
,”
Chin. J. Nonferrous Met.
,
21
, pp.
2523
2533
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZYXZ201110021.htm
7.
Fiorentino
,
A.
,
Ginestra
,
P. S.
,
Attanasio
,
A.
, and
Ceretti
,
E.
,
2020
, “
Numerical Optimization of the Blank Dimensions in Tube Hydroforming Using Line-Search and Bisection Methods
,”
Materials
,
13
(
4
), p.
945
.10.3390/ma13040945
8.
Song
,
W.
,
Kim
,
S.
,
Kim
,
J.
, and
Kang
,
B.
,
2005
, “
Analytical and Numerical Analysis of Bursting Failure Prediction in Tube Hydroforming
,”
J. Mater. Process Tech.
,
164–165
, pp.
1618
1623
.10.1016/j.jmatprotec.2005.01.008
9.
Vijaya Kumar
,
S. D.
,
Karuppanan
,
S.
, and
Ovinis
,
M.
,
2021
, “
Failure Pressure Prediction of High Toughness Pipeline With a Single Corrosion Defect Subjected to Combined Loadings Using Artificial Neural Network (ANN)
,”
Metals (Basel)
,
11
(
2
), p.
373
.10.3390/met11020373
10.
Zolfaghari
,
A.
, and
Izadi
,
M.
,
2020
, “
Burst Pressure Prediction of Cylindrical Vessels Using Artificial Neural Network
,”
ASME J. Pressure Vessel Technol.
,
142
(
3
), p.
031303
.10.1115/1.4045729
11.
Phan
,
H. C.
, and
Dhar
,
A. S.
,
2021
, “
Predicting Pipeline Burst Pressures With Machine Learning Models
,”
Int. J. Pressure Vessels Piping
,
191
, p.
104384
.10.1016/j.ijpvp.2021.104384
12.
Kim
,
J.
,
Kim
,
S.
,
Song
,
W.
, and
Kang
,
B.
,
2004
, “
Analytical Approach to Bursting in Tube Hydroforming Using Diffuse Plastic Instability
,”
Int. J. Mech. Sci.
,
46
(
10
), pp.
1535
1547
.10.1016/j.ijmecsci.2004.09.001
13.
Lei
,
L.
,
Kim
,
J.
, and
Kang
,
B.
,
2002
, “
Bursting Failure Prediction in Tube Hydroforming Processes by Using Rigid–Plastic FEM Combined With Ductile Fracture Criterion
,”
Int. J. Mech. Sci.
,
44
(
7
), pp.
1411
1428
.10.1016/S0020-7403(02)00045-0
14.
Teng
,
B.
,
Wang
,
W.
,
Liu
,
Y.
, and
Yuan
,
S.
,
2014
, “
Bursting Prediction of Hydroforming Aluminium Alloy Tube Based on Gurson-Tvergaard-Needleman Damage Model
,”
Procedia Eng.
,
81
, pp.
2211
2216
.10.1016/j.proeng.2014.10.310
15.
Chu
,
E.
, and
Xu
,
Y.
,
2004
, “
Hydroforming of Aluminum Extrusion Tubes for Automotive Applications. Part 1: Buckling, Wrinkling and Bursting Analyses of Aluminum Tubes
,”
Int. J. Mech. Sci.
,
46
(
2
), pp.
263
283
.10.1016/j.ijmecsci.2004.02.014
16.
Chen
,
Z.
,
Ye
,
H.
,
Yan
,
S.
,
Shen
,
X.
, and
Jin
,
Z.
,
2017
, “
The Failure Window Method and Its Application in Pipeline Burst
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p.
051702
.10.1115/1.4037045
17.
Xuan
,
F.
,
Li
,
P.
, and
Tu
,
S.
,
2006
, “
Limit Load Analysis for the Piping Branch Junctions Under in-Plane Moment
,”
Int. J. Mech. Sci.
,
48
(
4
), pp.
460
467
.10.1016/j.ijmecsci.2005.07.013
18.
Sornin
,
D.
,
Fayolle
,
S.
,
Bouchard
,
P. O.
, and
Massoni
,
E.
,
2009
, “
Plastic Instabilities Analysis During T-Shaped Tubes Hydro-Forming Process
,”
Int. J. Mater. Form.
,
2
(
2
), pp.
131
144
.10.1007/s12289-009-0399-7
19.
Ghazavi
,
H.
, and
Solhjoei
,
N.
,
2012
, “
Prediction of Rupture Using Ductile and MSFLD Damage in T-Shape Tube Hydro-Forming Process
,”
Int. J. Adv. Des. Manuf. Technol.
,
5
(
3
), pp.
53
60
.http://paper.researchbib.com/view/paper/1760
20.
Lohmousavii
,
M.
,
Bakhshijooybariii
,
M.
, and
Moriiii
,
K.
,
2010
, “
Mechanism of Improvement of Formability in Pulsating Hydroforming of T-Shape Tubes
,”
Amirkabir/MISC
,
42
, pp.
29
35
.10.22060/MISCJ.2010.188
21.
Shi
,
G. W.
,
Shun
,
C.
,
Dan
,
W.
, and
Wen
,
C. X.
,
2014
, “
Optimization of Internal Pressure Loading Path for Tube Hydroforming of T-Shaped Tube Based on Dynaform
,”
Mater. Sci. Forum
,
3256
, pp.
703
707
.10.4028/www.scientific.net/MSF.800-801.703
22.
Guo
,
X.
,
Ma
,
F.
,
Guo
,
Q.
,
Luo
,
X.
,
Kim
,
N.
, and
Jin
,
K.
,
2017
, “
A Calculating Method of Tube Constants of Ductile Fracture Criteria in Tube Free Bulging Process Based on M-K Theory
,”
Int. J. Mech. Sci.
,
128–129
, pp.
140
146
.10.1016/j.ijmecsci.2017.04.012
23.
He
,
Z.
,
Wang
,
Z.
,
Lin
,
Y.
,
Zhu
,
H.
, and
Yuan
,
S.
,
2019
, “
A Modified Marciniak–Kuczynski Model for Determining the Forming Limit of Thin-Walled Tube Extruded With Initial Eccentricity
,”
Int. J. Mech. Sci.
,
151
, pp.
715
723
.10.1016/j.ijmecsci.2018.12.029
24.
Kashani Zadeh
,
H.
, and
Mashhadi
,
M. M.
,
2006
, “
Finite Element Simulation and Experiment in Tube Hydroforming of Unequal T Shapes
,”
J. Mater. Process Tech.
,
177
(
1–3
), pp.
684
687
.10.1016/j.jmatprotec.2006.04.056
You do not currently have access to this content.