Abstract

The ASME Boiler and Pressure Vessel Code Section XI prescribes the stress intensity factor solutions at the surface and deepest points for a semi-elliptical crack. The ASME Code Section XI, however, provides no solutions for a crack with a large aspect ratio, that is a crack in which the crack depth a is larger than the half-length c. The difficulty in treating the crack with a large aspect ratio relates to the position of the maximum stress intensity factor, which appears at neither the surface point nor the deepest point. In this paper, we investigate the influence of the stress intensity factor at the maximum point for circumferential and axial inside surface cracks with a large aspect ratio in a cylinder. First, we obtain the influence coefficients Gi for the stress intensity factor at the surface point, the deepest point, and the maximum point by finite element analysis, and developed a series of closed-form Gi solutions. Three geometrical factors are considered as parameters affecting the influence coefficients Gi: aspect ratio (a/ℓ = 0.5, 1.0, 2.0, and 4.0), crack depth ratio (a/t = 0.01, 0.1, 0.2, 0.2, 0.4, 0.6, and 0.8), and radius to thickness ratio (Ri/t = 2, 5, 10, 20, 40, and 80). Finally, we propose methods for evaluating the stress intensity factor for a crack with a large aspect ratio in a manner that characterizes the influence of the solutions at the maximum point.

References

1.
Bažant
,
Z. P.
, and
Estenssoro
,
L. F.
,
1979
, “
Surface Singularity and Crack Propagation
,”
Int. J. Solids Struct.
,
15
(
5
), pp.
405
426
.10.1016/0020-7683(79)90062-3
2.
Newman
,
J. C.
, Jr.
, and
Raju
,
I. S.
,
1981
, “
An Empirical Stress-Intensity Factor Equation for the Surface Crack
,”
Eng. Fract. Mech.
,
15
(
1–2
), pp.
185
192
.10.1016/0013-7944(81)90116-8
3.
American Society of Mechanical Engineers
,
2021
, “
ASME Boiler and Pressure Vessel Code Section XI, Rules for Inservice Inspection of Nuclear Power Plant Components
,”
ASME
,
New York
.https://www.asme.org/codesstandards/find-codes-standards/bpvc-xi-bpvc-section-xi-rules-inservice-inspection-nuclear-powerplant-components-div-900111/2021/print-book
4.
Nakamura
,
T.
,
Taniguchi
,
K.
,
Hirano
,
S.
,
Narita
,
M.
, and
Sato
,
T.
,
2009
, “
Stress Corrosion Cracking in Welds of Reactor Vessel Nozzle at Ohi-3 and of Other Vessel's Nozzle at Japan's PWR Plants
,”
ASME
Paper No. PVP2009-77344.10.1115/PVP2009-77344
5.
Malekian
,
C.
,
Wyart
,
E.
,
Savelsberg
,
M.
,
Teughels
,
A.
,
Fouquet
,
P. E.
,
Minjauw
,
N.
, and
Wendling
,
A.
,
2009
, “
Stress Intensity Factors for Semi-Elliptical Surface Cracks with Flaw Aspect Ratio Beyond the ASME XI Limit
,”
ASME
Paper No. PVP2009-77917.10.1115/PVP2009-77917
6.
Li
,
Y.
,
Hasegawa
,
K.
,
Katsumata
,
G.
,
Osakabe
,
K.
, and
Okada
,
H.
,
2015
, “
Development of Stress Intensity Factors for Surface Cracks With Large Aspect Ratio in Plates
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051207
.10.1115/1.4030026
7.
Nagai
,
M.
,
Miura
,
N.
, and
Shiratori
,
M.
,
2015
, “
Stress Intensity Factor Solution for a Surface Crack With High Aspect Ratio Subjected to an Arbitrary Stress Distribution Using the Influence Function Method
,”
Int. J. Pressure Vessels Piping
,
131
, pp.
2
9
.10.1016/j.ijpvp.2015.04.003
8.
Li
,
Y.
,
Hasegawa
,
K.
, and
Udagawa
,
M.
,
2016
, “
Development of Stress Intensity Factors for Cracks With Large Aspect Ratios in Pipes and Plates
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p.
021202
.10.1115/1.4034286
9.
Azuma
,
K.
,
Li
,
Y.
, and
Xu
,
S.
,
2019
, “
Closed-Form Stress Intensity Factor Solutions for Surface Cracks With Large Aspect Ratios in Plates
,”
ASME J. Pressure Vessel Technol.
,
142
(
2
), p.
021207
.10.1115/1.4045029
10.
Xu
,
S.
,
Lee
,
D.
,
Scarth
,
D.
, and
Cipolla
,
R.
,
2015
, “
Update on Stress Intensity Factor Influence Coefficients for Axial ID Surface Flaws in Cylinders for Appendix A of ASME Section XI
,”
ASME
Paper No. PVP2015-46009.10.1115/PVP2015-46009
11.
Xu
,
S.
,
Lee
,
D.
,
Scarth
,
D.
, and
Cipolla
,
R.
,
2016
, “
Closed-form Relations for Stress Intensity Factor Influence Coefficients for Axial Outside Surface Flaws in Cylinders for Appendix A of ASME Section XI
,”
ASME
Paper No. PVP2016-64023.10.1115/PVP2016-64023
12.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
, 3rd ed.,
CRC Press
,
Cambridge, UK
, Chap.
2
.
13.
Atroshchenko
,
E.
,
Potapenko
,
S.
, and
Glinka
,
G.
,
2009
, “
Stress Intensity Factor for an Embedded Elliptical Crack Under Arbitrary Normal Loading
,”
Int. J. Fatigue
,
31
, pp.
1907
1910
.10.1016/j.ijfatigue.2008.12.004
14.
Systat Software
,
2002
, “
TableCurve 3D Version 4.0
,”
Systat Software
,
Chicago, IL
.
15.
Marie
,
S.
,
Chapuliot
,
S.
,
Kayser
,
Y.
,
Lacire
,
M. H.
,
Drubay
,
B.
,
Barthelet
,
B.
,
Delliou
,
P. L.
,
Rougier
,
V.
,
Naudin
,
C.
,
Gilles
,
P.
, and
Triay
,
M.
,
2007
, “
French RSE-M and RCC-MR Code Appendices for Flaw Analysis: Presentation of the Fracture Parameters Calculation—Part II: Cracked Plates
,”
Int. J. Pressure Vessels Piping
,
84
, pp.
601
613
.10.1016/j.ijpvp.2007.05.004
16.
Le Delliou
,
P.
, and
Chapuliot
,
S.
,
2015
, “
Comparison of the Stress Intensity Factor Influence Coefficients for Axial ID Surface Cracks in Cylinders of RSE-M and API 579-1
,”
ASME
Paper No. PVP2015-45236.10.1115/PVP2015-45236
You do not currently have access to this content.