Abstract

The long-term exposure of 9Cr-1Mo-V (Grade 91) steel to elevated temperature can have a significant effect on reducing its yield and tensile strength. The yield and tensile strength changes, in turn, have potential implications to the assurance of the integrity of components constructed with this material over their design or intended lifetime. The ASME Boiler & Pressure Vessel Code (BPVC), Section III, Division 5 (III-5, high temperature reactors) provides tabulated reduction factors for Grade 91 yield and tensile strength as a function of exposure temperature and time up to 300,000 h. ASME BPVC III-5 s intent to extend these factors to an exposure duration of 500,000 h, the lack of available historic information to support the existing factors, and the recent development of a physics-based prediction model for ASME BPVC application are prime motivation for this study. This paper describes results of the conventional time-temperature Hollomon–Jaffe parameter, strength reduction ratio prediction method using an updated, extensive Grade 91 unaged and related aged material strength database. The method, previously used by Oak Ridge National Laboratory in its evaluation of Grade 91 and likely used in development of the existing BPVC III-5 reduction factors, provides strength reduction ratio predictions useful for general component fitness-for-service assessments and for computing BPVC III-5 reduction factors as defined. Specific reduction factors to 500,000 h at 650 °C applicable to ASME BPVC III-5 are computed from the strength reduction ratios.

References

1.
Larson
,
F. R.
, and
Miller
,
J. A.
,
1952
, “
A Time Temperature Relationship for Rupture and Creep Stresses
,”
Trans. ASME
,
74
, pp.
765
771
.
2.
Smith
,
G. V.
,
1971
,
Supplemental Report on the Elevated-Temperature Properties of Chromium-Molybdenum Steels (an Evaluation of 2¼Cr-1Mo Steel)
,
ASTM
,
Philadelphia, PA
, ASTM Data Series Publication DS 6S2.
3.
Swindeman
,
R. W.
,
Swindeman
,
M. J.
,
Roberts
,
B. W.
,
Thurgood
,
B. E.
, and
Marriott
,
D. W.
,
2009
,
Verification of Allowable Stresses in ASME Section III Subsection NH for Grade 91 Steel
,
ASME
,
New York
, Report No. ASME STP-NU-019-1.
4.
ASME
,
2021
, “ASME Boiler and Pressure Vessel Code, Section III, Division 5, High Temperature Reactors,”
ASME
,
New York
.
5.
Hollomon
,
J. H.
, and
Jaffe
,
L. D.
,
1945
, “
Time-Temperature Relations in Tempering Steel
,”
Trans. Am. Inst. Min. Metall. Eng.
,
162
, pp.
223
249
.
6.
Parker
,
J.
,
Siefert
,
J.
, and
Coleman
,
K.
,
2013
, “
Assessment of the Tempering Behavior of Grade 91 Steel
,”
Mater. Perform. Charact.
,
2
(
1
), p.
20120039
.10.1520/MPC20120039
7.
Thomas
,
G. A.
,
Speer
,
J. G.
,
Matlock
,
D. K.
,
Krauss
,
G.
, and
Hackenberg
,
R. E.
,
2008
, “
Time-Temperature Equivalence in Martensite Tempering
,”
International Conference on Martensitic Transformations Proceedings
, Santa Fe, NM, June 29.https://www.osti.gov/biblio/986510-timetemperature-equivalence-martensite-tempering
8.
Canale
,
L. C. F.
,
Yao
,
X.
,
Gu
,
J.
, and
Totten
,
G. E.
,
2008
, “
A Historical Overview of Steel Tempering Parameters
,”
Int. J. Microstruct. Mater. Prop.
,
3
(
4/5
), pp.
474
525
.10.1504/IJMMP.2008.022033
9.
Klueh
,
R. L.
,
Maziasz
,
P. J.
, and
Corwin
,
W. R.
,
1988
,
Development of Ferritic Steels for Fusion Reactor Applications
,
ORNL
,
Oak Ridge, TN
, Report No. ORNL-6472.
10.
Cardoso
,
B. R.
,
Matt
,
C.
,
Furtado
,
H. C.
, and
de Almeida
,
L. H.
,
2015
, “
Creep Damage in High-Pressure Rotor Based on Hardness Evaluation
,”
J. Mat. Eng. Perform.
,
24
, pp.
2784
2791
.10.1007/s11665-015-1555-5
11.
Kim
,
J.-Y.
,
Lee
,
J.-J.
,
Lee
,
K.-W.
, and
Kwon
,
D.
,
2009
, “
Nondestructive Evaluation of Flow Properties in Thermally Aged Cr-Mo-V Steel Using Instrumented Indentation Tests
,”
J. Mater. Sci.
,
44
(
13
), pp.
3561
3565
.10.1007/s10853-009-3480-1
12.
ECCC Recommendations,
2005
, “
Residual Life Assessment and Microstructure
,” AC/MC/93[Issue 1], European Creep Collaborative Committee, accessed June 2020, https://www.eccc-creep.com/wp-content/uploads/2019/10/ECCC_RECOMMENDATIONS-2014-Vol6.pdf
13.
Yang
,
R. C.
,
Che
,
K.
,
Feng
,
H. X.
, and
Wang
,
H.
,
2004
, “
Determination and Application of Larson-Miller Parameter for Heat Resistant Steel 12Cr1MoV and 15CrMo
,”
Acta Met. Sin. (Eng. Lett.)
,
17
(
4
), pp.
471
476
.https://www.researchgate.net/publication/289652197_Determination_and_application_of_Larson-Miller_parameter_for_heat_resistant_steel_12CrlMoV_and_15CrMo
14.
Brinkman
,
C. R.
,
Alexander
,
D. J.
, and
Maziasz
,
P. J.
,
1990
,
Modified 9Cr-1Mo Steel for Advanced Steam Generator Applications
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
, ORNL Report No. CONF-901026-1.
15.
Ren
,
W.
,
Foulds
,
J.
,
Miller
,
R.
, and
Hoffelner
,
W.
,
2020
,
Oak Ridge National Laboratory Technical Input for the Nuclear Regulatory Commission Review of the 2017 Edition of the ASME Boiler and Pressure Vessel Code, Section III, Division 5, High Temperature Reactors
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL/SPR-2020/1653.
16.
Li
,
M.
, and
Chen
,
W.-Y.
,
2020
, “
Microstructure-Based Prediction of Thermal Aging Strength Reduction Factors for Grade 91 Ferritic-Martensitic Steel
,”
Mater. Sci. Eng. A
,
798
, p.
140116
.10.1016/j.msea.2020.140116
17.
Li
,
M.
,
Chen
,
W.-Y.
, and
Natesan
,
K.
,
2018
,
Development of a Mechanistic Thermal Aging Model for Grade 91
,
Argonne National Laboratory
,
Lemont, IL
, Report No. ANL-ART-150.
18.
Li
,
M.
,
Natesan
,
K.
, and
Chen
,
W.-Y.
,
2017
,
Report on Understanding and Predicting Effects of Thermal Aging on Microstructure and Tensile Properties of Grade 91 Steel for Structural Components
,
Argonne National Laboratory
,
Lemont, IL
, Report No. ANL-ART-108.
19.
Ren
,
W.
,
2021
, “
A Discussion of Strength Reduction Factor Development for Thermal Aging Effect on Nuclear Structural Alloys
,”
ASME Paper No. PVP2021-61055.
20.
Brinkman
,
C. R.
, and
Baldwin
,
R. H.
,
1989
,
Influence of Thermal Aging (to 50,000 Hours) on the Tensile Properties of Modified 9Cr-1Mo Steel
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL/TM-11223.
21.
Brinkman
,
C. R.
,
Gieseke
,
B.
,
Alexander
,
D. J.
, and
Maziasz
,
P. J.
,
1992
, “
The Influence of Long Term Thermal Aging on the Microstructure and Mechanical Properties of Modified 9Cr-1Mo Steel
,” Proceedings of Conference on Microstructure and Mechanical Properties of Aging Materials, Detroit, MI, Nov. 2–5, Report No.
CONF-9211110, DE93001373
.https://www.osti.gov/biblio/7183207-influencelong-term-thermal-aging-microstructure-mechanical-properties-modified-steel
22.
Blass
,
J. J.
,
1991
, “JAPC-USDOE Joint Study on Structural design Methods and Data for Modified 9Cr-1Mo Steel,” Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/9CR/91-1.
23.
ORNL,
1988
,
Nuclear Systems Materials Handbook
, Vol.
2
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
.
24.
Swindeman
,
R.
,
2013
, “Unpublished ORNL MSTD Database Record 9Cr-1Mo-V 10148 Plate Tensile Creep Fatigue_SWINDEMAN_20130923,” Oak Ridge National Laboratory, Oak Ridge, TN.
25.
Messner
,
M.
,
2021
, "Argonne National Laboratory, Background Document for R19-411, Extend Thermal Aging Factor for Grade 91 from 300,000 to 500,000 Hours,” ASME Boiler and Pressure Vessel Code Committee Unpublished Data.
26.
Messner
,
M.
,
2021
, “Grade 91 Aging Data Reanalysis, Email Communication to Foulds, J., Clarus Consulting, LLC,” Argonne National Laboratory, Lemont, IL.
27.
Foulds
,
J.
,
2021
, “
Estimation of Unaged Grade 91 (9Cr-1Mo-V) Yield and Tensile Strength Vs. Temperature—Input for ASME BPVC RN 19-411
,”
Clarus Consulting, LLC
,
Charlotte, NC
, Document No. CC001.191.
You do not currently have access to this content.