Abstract

In this study, the mechanical behavior of austenitic stainless steel 304 L under low cycle fatigue was investigated under different uni-axial strain-controlled loadings of 0.5%, 0.8%, 1.0%, 1.2%, and 1.5%. The analysis of the experimentally determined strain versus stress hysteresis curves was carried out to achieve stress quantities such as amplitude stress, peak effective stress, and peak back stress. It was observed that in the early stage of cyclic loading, material underwent initial hardening, followed by softening phenomena which were more considerable in the lower strain range. Before the failure, the secondary hardening was observed at the final stage. In addition to accumulated plastic strain, it was shown that the peak back stress and peak effective stress which is associated with isotropic hardening and kinematic hardening behavior, respectively, are influenced by the strain range effect. Therefore, the coefficient of recall term that appeared in the Armstrong–Frederick nonlinear kinematic hardening model was considered to be dependent on the radius of the memory surface. Furthermore, to increase the ability of the plasticity constitutive model to show a smooth transition between various hardening stages, the radius of the yield surface which is associated with the isotropic hardening rule was equipped with the fading effect. Finally, by the comparison of numerical and experimental results, the capability of the rate-dependent constitutive model over classical rate-independent plasticity in the prediction of mechanical behavior of steel 304 L under strain-controlled cyclic loading was revealed.

References

1.
Demeri
,
M. Y.
,
2013
,
Advanced High-Strength Steels: Science, Technology, and Applications
,
ASM International
,
Materials Park, OH
.
2.
Paul
,
S. K.
,
2019
, “
A Critical Review of Experimental Aspects in Ratcheting Fatigue: Microstructure to Specimen to Component
,”
J. Mater. Res. Technol.
,
8
(
5
), pp.
4894
4914
.10.1016/j.jmrt.2019.06.014
3.
Doong
,
S.-H.
,
Socie
,
D. F.
, and
Robertson
,
I. M.
,
1990
, “
Dislocation Substructures and Nonproportional Hardening
,”
ASME J. Eng. Mater. Technol.
,
112
(
4
), pp.
456
464
.10.1115/1.2903357
4.
Kang
,
G.
,
Dong
,
Y.
,
Wang
,
H.
,
Liu
,
Y.
, and
Cheng
,
X.
,
2010
, “
Dislocation Evolution in 316 L Stainless Steel Subjected to Uniaxial Ratchetting Deformation
,”
Mater. Sci. Eng.: A
,
527
(
21–22
), pp.
5952
5961
.10.1016/j.msea.2010.06.020
5.
Xu
,
L.-Y.
,
Fan
,
J.-S.
,
Yang
,
Y.
,
Tao
,
M.-X.
, and
Tang
,
Z.-Y.
,
2020
, “
An Improved Elasto-Plastic Constitutive Model for the Exquisite Description of Stress–Strain Hysteresis Loops With Cyclic Hardening and Softening Effects
,”
Mech. Mater.
,
150
, p.
103590
.10.1016/j.mechmat.2020.103590
6.
Ahmadzadeh
,
G.
, and
Varvani-Farahani
,
A.
,
2016
, “
A Kinematic Hardening Rule to Investigate the Impact of Loading Path and Direction on Ratcheting Response of Steel Alloys
,”
Mech. Mater.
,
101
, pp.
40
49
.10.1016/j.mechmat.2016.07.010
7.
Han
,
K.
,
Van Tyne
,
C.
, and
Levy
,
B.
,
2005
, “
Effect of Strain and Strain Rate on the Bauschinger Effect Response of Three Different Steels
,”
Metall. Mater. Trans. A
,
36
(
9
), pp.
2379
2384
.10.1007/s11661-005-0110-7
8.
Han
,
S. Y.
,
Sohn
,
S. S.
,
Shin
,
S. Y.
,
Bae
,
J.-h.
,
Kim
,
H. S.
, and
Lee
,
S.
,
2012
, “
Effects of Microstructure and Yield Ratio on Strain Hardening and Bauschinger Effect in Two API X80 Linepipe Steels
,”
Mater. Sci. Eng.: A
,
551
, pp.
192
199
.10.1016/j.msea.2012.05.007
9.
Jiang
,
Y.
, and
Zhang
,
J.
,
2008
, “
Benchmark Experiments and Characteristic Cyclic Plasticity Deformation
,”
Int. J. Plast.
,
24
(
9
), pp.
1481
1515
.10.1016/j.ijplas.2007.10.003
10.
Bemfica
,
C.
,
Carneiro
,
L.
,
Mamiya
,
E.
, and
Castro
,
F.
,
2019
, “
Fatigue and Cyclic Plasticity of 304 L Stainless Steel Under Axial-Torsional Loading at Room Temperature
,”
Int. J. Fatigue
,
125
, pp.
349
361
.10.1016/j.ijfatigue.2019.04.009
11.
Chaboche
,
J.
,
Van
,
K. D.
, and
Cordier
,
G.
,
1979
, “
Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel
,”
Transactions of the 5th International Conference on Structural Mechanics in Reactor Technology
, Vol. L, Berlin, Germany, Aug. 13–17, Paper No. L 11/3.http://www.lib.ncsu.edu/resolver/1840.20/26854
12.
Ohno
,
N.
,
1982
, “
A Constitutive Model of Cyclic Plasticity With a Nonhardening Strain Region
,”
ASME J. Appl. Mech.
,
49
(
4
), pp.
721
727
.10.1115/1.3162603
13.
Dafalias
,
Y.
, and
Popov
,
E.
,
1975
, “
A Model of Nonlinearly Hardening Materials for Complex Loading
,”
Acta Mech.
,
21
(
3
), pp.
173
192
.10.1007/BF01181053
14.
Taleb
,
L.
,
Cailletaud
,
G.
, and
Blaj
,
L.
,
2006
, “
Numerical Simulation of Complex Ratcheting Tests With a Multi-Mechanism Model Type
,”
Int. J. Plast.
,
22
(
4
), pp.
724
753
.10.1016/j.ijplas.2005.05.003
15.
Armstrong
,
P. J.
, and
Frederick
,
C.
O.,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
Central Electricity Generating Board and Berkeley Nuclear Laboratories
, Berkeley, Gloucestershire, UK, Report No. RD/B/N 731.https://www.tandfonline.com/doi/abs/10.1179/096034007X207589?journalCode=ymht20
16.
Chaboche
,
J.-L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.10.1016/0749-6419(86)90010-0
17.
Zhou
,
J.
,
Sun
,
Z.
,
Kanouté
,
P.
, and
Retraint
,
D.
,
2018
, “
Experimental Analysis and Constitutive Modelling of Cyclic Behaviour of 316 L Steels Including Hardening/Softening and Strain Range Memory Effect in LCF Regime
,”
Int. J. Plast.
,
107
, pp.
54
78
.10.1016/j.ijplas.2018.03.013
18.
Bemfica
,
C.
, and
Castro
,
F.
,
2021
, “
A Cyclic Plasticity Model for Secondary Hardening Due to Strain-Induced Martensitic Transformation
,”
Int. J. Plast.
,
140
, p.
102969
.10.1016/j.ijplas.2021.102969
19.
Taleb
,
L.
, and
Cailletaud
,
G.
,
2010
, “
An Updated Version of the Multimechanism Model for Cyclic Plasticity
,”
Int. J. Plast.
,
26
(
6
), pp.
859
874
.10.1016/j.ijplas.2009.11.002
20.
Taleb
,
L.
, and
Cailletaud
,
G.
,
2011
, “
Cyclic Accumulation of the Inelastic Strain in the 304 L SS Under Stress Control at Room Temperature: Ratcheting or Creep?
,”
Int. J. Plast.
,
27
(
12
), pp.
1936
1958
.10.1016/j.ijplas.2011.02.001
21.
Chaboche
,
J.-L.
,
1989
, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plast.
,
5
(
3
), pp.
247
302
.10.1016/0749-6419(89)90015-6
22.
Belytschko
,
T.
,
Liu
,
W. K.
,
Moran
,
B.
, and
Elkhodary
,
K.
,
2014
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
, Hoboken, NJ.
23.
Kobayashi
,
M.
, and
Ohno
,
N.
,
2002
, “
Implementation of Cyclic Plasticity Models Based on a General Form of Kinematic Hardening
,”
Int. J. Numer. Methods Eng.
,
53
(
9
), pp.
2217
2238
.10.1002/nme.384
24.
Kang
,
G.
,
2004
, “
A Visco-Plastic Constitutive Model for Ratcheting of Cyclically Stable Materials and Its Finite Element Implementation
,”
Mech. Mater.
,
36
(
4
), pp.
299
312
.10.1016/S0167-6636(03)00024-3
25.
Marquis
,
D.
,
1979
, “
Etude Théorique et Vérification Expérimentale D'un Modèle de Plasticité Cyclique
,” Thèse de Doctorat,
Université Pierre et Marie Curie
, Paris, France.
26.
Nouailhas
,
D.
,
Cailletaud
,
G.
,
Policella
,
H.
,
Marquis
,
D.
,
Dufailly
,
J.
,
Lieurade
,
H.
,
Ribes
,
A.
, and
Bollinger
,
E.
,
1985
, “
On the Description of Cyclic Hardening and Initial Cold Working
,”
Eng. Fract. Mech.
,
21
(
4
), pp.
887
895
.10.1016/0013-7944(85)90095-5
27.
Krishna
,
S.
,
Hassan
,
T.
,
Naceur
,
I. B.
,
Saï
,
K.
, and
Cailletaud
,
G.
,
2009
, “
Macro Versus Micro-Scale Constitutive Models in Simulating Proportional and Nonproportional Cyclic and Ratcheting Responses of Stainless Steel 304
,”
Int. J. Plast.
,
25
(
10
), pp.
1910
1949
.10.1016/j.ijplas.2008.12.009
28.
Davis
,
J. R.
,
2004
,
Tensile Testing
,
ASM International
, Materials Park, OH.
29.
Mahato
,
J. K.
,
De
,
P. S.
,
Sarkar
,
A.
,
Kundu
,
A.
, and
Chakraborti
,
P. C.
,
2014
, “
Effect of Prestrain and Stress Rate on Bauschinger Effect of Monotonically and Cyclically Deformed OFHC Copper
,”
Procedia Eng.
,
74
, pp.
368
375
.10.1016/j.proeng.2014.06.281
30.
Xu
,
L.
,
Nie
,
X.
,
Fan
,
J.
,
Tao
,
M.
, and
Ding
,
R.
,
2016
, “
Cyclic Hardening and Softening Behavior of the Low Yield Point Steel BLY160: Experimental Response and Constitutive Modeling
,”
Int. J. Plast.
,
78
, pp.
44
63
.10.1016/j.ijplas.2015.10.009
31.
Pegues
,
J.
,
Shao
,
S.
,
Shamsaei
,
N.
,
Schneider
,
J.
, and
Moser
,
R.
,
2017
, “
Cyclic Strain Rate Effect on Martensitic Transformation and Fatigue Behaviour of an Austenitic Stainless Steel
,”
Fatigue Fract. Eng. Mater. Struct.
,
40
(
12
), pp.
2080
2091
.10.1111/ffe.12627
32.
Dutta
,
K.
,
Sivaprasad
,
S.
,
Tarafder
,
S.
, and
Ray
,
K.
,
2010
, “
Influence of Asymmetric Cyclic Loading on Substructure Formation and Ratcheting Fatigue Behaviour of AISI 304 LN Stainless Steel
,”
Mater. Sci. Eng.: A
,
527
(
29–30
), pp.
7571
7579
.10.1016/j.msea.2010.07.107
33.
Luo
,
C.
,
Sun
,
J.
,
Zeng
,
W.
, and
Yuan
,
H.
,
2020
, “
Kinetics of Deformation-Induced Martensitic Transformation Under Cyclic Loading Conditions
,”
Scr. Mater.
,
189
, pp.
53
57
.10.1016/j.scriptamat.2020.08.003
34.
Luo
,
C.
,
Zeng
,
W.
,
Sun
,
J.
, and
Yuan
,
H.
,
2020
, “
Plasticity Modeling for a Metastable Austenitic Stainless Steel With Strain-Induced Martensitic Transformation Under Cyclic Loading Conditions
,”
Mater. Sci. Eng.: A
,
775
, p.
138961
.10.1016/j.msea.2020.138961
35.
Hassan
,
T.
,
Taleb
,
L.
, and
Krishna
,
S.
,
2008
, “
Influence of Non-Proportional Loading on Ratcheting Responses and Simulations by Two Recent Cyclic Plasticity Models
,”
Int. J. Plast.
,
24
(
10
), pp.
1863
1889
.10.1016/j.ijplas.2008.04.008
You do not currently have access to this content.