Seismic analysis of steam generator is of paramount importance in the safety assessment of nuclear installations. These analyses require, in particular, the calculation of frequency, mode shape, and effective modal mass of the system eigenmodes. As fluid-structure interaction effects can significantly affect the dynamic behavior of immersed structures, the numerical modeling of the steam generator has to take into account FSI. A complete modeling of heat exchangers (including pressure vessel, tubes, and fluid) is not accessible to the engineer for industrial design studies. In the past decades, homogenization methods have been studied and developed in order to model tubes and fluid through an equivalent continuous media, thus avoiding the tedious task to mesh all structure and fluid subdomains within the tube bundle. Few of these methods have nonetheless been implemented in industrial finite element codes. In a previous paper (Sigrist, et al., 2007, “Fluid-Structure Interaction Effects Modeling for the Modal Analysis of a Nuclear Pressure Vessel,” J. Pressure Vessel Technol., 123, pp. 1–6), a homogenization method has been applied to an industrial case for the modal analysis of a nuclear rector with internal structures and coupling effects modeling. The present paper aims at investigating the extension of the proposed method for the dynamic analysis of tube bundles with fluid-structure interaction modeling. The homogenization method is compared with the classical coupled method in terms of eigenfrequencies, eigenmodes, and effective modal masses.

1.
Brochard
,
D.
,
Gantenbein
,
F.
, and
Gibert
,
R. J.
, 1987, “
Homogenisation of Tube Bundle. Application to LMFBR Core Analysis
,”
Ninth Conference on Structural Mechanic in Reactor Technology
, Lausanne, Switzerland.
2.
Zhang
,
R. J.
, 1998, “
A Unified Homogenisation Mode of Beam Bundle in Fluid
,”
J. Pressure Vessel Technol.
0094-9930,
120
, pp.
56
61
.
3.
Cheval
,
K.
, 2001, “
Modélisation du comportement sismique de structures multitubulaires baignées par un fluide dense
,” Ph.D. thesis, Université Paris VI, Paris.
4.
Zhang
,
R. J.
,
Wang
,
W. Q.
,
Hou
,
S. H.
, and
Chan
,
C. K.
, 2001, “
Seismic Analysis of Reactor Core
,”
Comput. Struct.
,
79
, pp.
1395
1404
. 0045-7949
5.
Broc
,
D.
,
Queval
,
J. C.
, and
Viallet
,
E.
, 2003, “
Seismic Behaviour of PWR Reactor Cores: Fluid-Structure Effects
,”
17th Conference on Structural Mechanic in Reactor Technology
, Prague.
6.
Brochard
,
D.
,
Gantenbein
,
F.
, and
Gibert
,
R. J.
, 1987, “
Modelling of the Dynamic Behaviour of LWR Internals
,”
Ninth Conference on Structural Mechanic in Reactor Technology
, Lausanne, Switzerland.
7.
Sigrist
,
J. F.
, and
Broc
,
D.
, 2006, “
A Homogenisation Method for the Modal Analysis of a Nuclear Reactor With Fluid-Structure Interaction
,”
Pressure Vessel and Piping Conference
, Vancouver, BC.
8.
Broc
,
D.
, and
Sigrist
,
J. F.
, 2006, “
Fluid-Structure Interaction: Numerical Validation of a Homogenization Method
,”
Pressure Vessel and Piping Conference
, Vancouver, BC.
9.
Planchard
,
J.
, 1985, “
Vibration of Nuclear Fuel Assemblies: A Simplified Model
,”
Nucl. Eng. Des.
0029-5493,
86
, pp.
383
391
.
10.
Planchard
,
J.
, 1985, “
Modelling the Dynamic Behaviour of Nuclear Reactor Fuel Assemblies
,”
Nucl. Eng. Des.
,
90
, pp.
331
339
. 0029-5493
11.
Schumann
,
U.
, 1981, “
Homogenised Equations of Motion for Rod Bundle in the Fluid With Periodic Structure
,”
Ing.-Arch.
0020-1154,
50
, pp.
203
216
.
12.
Shinohara
,
Y.
, and
Shimogo
,
T.
, 1981, “
Vibrations of Square and Hexagonal Cylinders in a Liquid
,”
J. Pressure Vessel Technol.
0094-9930,
103
, pp.
233
239
.
13.
Planchard
,
J.
, 1987, “
Global Behaviour of Large Elastic Tube Bundle Immersed in a Fluid
,”
Comput. Mech.
,
2
, pp.
105
118
. 0178-7675
14.
Hammami
,
L.
, 1991, “
Etude de l’interaction fluide/structure dans les faisceaux de tubes par une méthode d’homogénéisation. Application à l’analyse sismique des cœurs RNR
,” Ph.D. thesis, Université Paris VI, Paris.
15.
Jacquelin
,
E.
,
Brochard
,
D.
,
Trollat
,
C.
, and
Jézéquel
,
L.
, 1996, “
Homogenisation of Non-Linear Array of Confined Beams
,”
Nucl. Eng. Des.
,
165
, pp.
213
223
. 0029-5493
16.
Zhang
,
R. J.
, 1998, “
A Unified Homogenisation Mode of Beam Bundle in Fluid
,”
J. Pressure Vessel Technol.
0094-9930,
120
, pp.
56
61
.
17.
Zhang
,
R. J.
, 1999, “
A Beam Bundle in a Compressible Inviscid Fluid
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
546
548
.
18.
Brochard
,
D.
,
Jedrzajewski
,
F.
,
Gibert
,
R. J.
, and
Le Moal
,
D.
, 1996, “
3D Analysis of the Fluid Structure Interaction in Tube Bundle Using Homogenization Methods
,”
ASME, Pressure Vessel and Piping Division (Publication)
337, pp.
167
171
.
19.
Sigrist
,
J. F.
, and
Broc
,
D.
, 2007, “
Investigation of Numerical Methods for Modal Analysis of Tube Bundle With Fluid-Structure Interaction
,”
Pressure Vessel and Piping Conference
, San Antonio, TX.
20.
Sigrist
,
J. F.
,
Broc
,
D.
,
Lainé
,
C.
, 2007, “
Fluid-Structure Interaction Effects Modeling for the Modal Analysis of a Nuclear Pressure Vessel
,”
J. Pressure Vessel Technol.
0094-9930,
123
, pp.
1
6
.
21.
Morand
,
H. -J. P.
, and
Ohayon
,
R.
, 1995,
Fluid-Structure Interaction
,
Wiley
,
New York
.
22.
Sigrist
,
J. F.
, and
Broc
,
D.
, 2007, “
Homogenisation Method for the Modal Analysis of a Nuclear Reactor With Internal Structures Modelling and Fluid Structure-Interaction Coupling
,”
Nucl. Eng. Des.
,
237
, pp.
431
440
. 0029-5493
23.
Sigrist
,
J. F.
, and
Garreau
,
S.
, 2007, “
Dynamic Analysis of Fluid-Structure Interaction Problems With Spectral Method Using Pressure-Based Finite Elements
,”
Finite Elem. Anal. Design
,
43
, pp.
287
300
. 0168-874X
24.
Planchard
,
J.
, 1982, “
Eigenfrequencies of a Tube Bundle Placed in a Confined Fluid
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
30
, pp.
75
93
.
25.
Axisa
,
F.
, 2006,
Modelling of Mechanical Systems, Vol. 3: Fluid-Structure Interaction
,
Elsevier
,
New York
.
You do not currently have access to this content.