A dynamic numerical model of a solar cavity-type reactor for the thermal dissociation of ZnO is formulated based on a detailed radiative heat transfer analysis combining the Monte Carlo ray-tracing technique and the radiosity enclosure theory. The quartz window is treated as a semitransparent glass layer with spectrally and directionally dependent optical properties. Model validation is accomplished by comparison with experimental results obtained with a 10-kW solar reactor prototype in terms of cavity temperatures, reaction extents, and quartz window temperature distribution measured by IR thermography. The solar-to-fuel energy conversion efficiencies obtained experimentally are reported, and the various energy flows are quantified.

References

1.
Steinfeld
,
A.
,
2005
, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
,
78
(
5
), pp.
603
615
.10.1016/j.solener.2003.12.012
2.
Abanades
,
S.
,
Charvin
,
P.
,
Flamant
,
G.
, and
Neveu
,
P.
,
2006
, “
Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,”
Energy
,
31
(
14
), pp.
2805
2822
.10.1016/j.energy.2005.11.002
3.
Smestad
,
G. P.
, and
Steinfeld
,
A.
,
2012
, “
Review: Photochemical and Thermochemical Production of Solar Fuels From H2O and CO2 Using Metal Oxide Catalysts
,”
Ind. Eng. Chem. Res.
,
51
(
37
), pp.
11828
11840
.10.1021/ie3007962
4.
Steinfeld
,
A.
,
2002
, “
Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
,
27
(
6
), pp.
611
619
.10.1016/S0360-3199(01)00177-X
5.
Perkins
,
C.
, and
Weimer
,
A. W.
,
2004
, “
Likely Near-Term Solar-Thermal Water Splitting Technologies
,”
Int. J. Hydrogen Energy
,
29
(
15
), pp.
1587
1599
.10.1016/j.ijhydene.2004.02.019
6.
Schunk
,
L.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2008
, “
A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021009
.10.1115/1.2840576
7.
Schunk
,
L.
,
Lipinski
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Heat Transfer Model of a Solar Receiver-Reactor for the Thermal Dissociation of ZnO—Experimental Validation at 10 kW and Scale-Up to 1 MW
,”
Chem. Eng. J.
,
150
(
2–3
), pp.
502
508
.10.1016/j.cej.2009.03.012
8.
Gstoehl
,
D.
,
Brambilla
,
A.
,
Schunk
,
L.
, and
Steinfeld
,
A.
,
2008
, “
A Quenching Apparatus for the Gaseous Products of the Solar Thermal Dissociation of ZnO
,”
J. Mater. Sci.
,
43
(
14
), pp.
4729
4736
.10.1007/s10853-007-2351-x
9.
Schunk
,
L.
,
Lipinski
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Ablative Heat Transfer in a Shrinking Packed-Bed of ZnO Undergoing Solar Thermal Dissociation
,”
AIChE J.
,
55
(
7
), pp.
1659
1666
.10.1002/aic.11782
10.
Roine
,
A.
,
1997
,
Outokompu HSC Chemistry for Windows
,
Outokompu Research
,
Pori, Finland
.
11.
Schunk
,
L.
, and
Steinfeld
,
A.
,
2009
, “
Kinetics of the Thermal Dissociation of ZnO Exposed to Concentrated Solar Irradiation Using a Solar-Driven Thermogravimeter in the 1800-2100 K Range
,”
AIChE J.
,
55
(
6
), pp.
1497
1504
.10.1002/aic.11765
12.
Dombrovsky
,
L.
,
Schunk
,
L.
,
Lipinski
,
W.
, and
Steinfeld
,
A.
,
2009
, “
An Ablation Model for the Thermal Decomposition of Porous Zinc Oxide Layer Heated by Concentrated Solar Radiation
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2444
2452
.10.1016/j.ijheatmasstransfer.2008.12.025
13.
Siegel
,
R.
,
1973
, “
Net Radiation Method for Enclosure Systems Involving Partially Transparent Walls
,” NASA, Washington, DC, Technical Report No. TN D-7384.
14.
Petrasch
,
J.
,
2002
, “
Thermal Modeling of Solar Chemical Reactors: Transient Behavior, Radiative Transfer
,” M.S. thesis, ETH Zurich, Zurich, Switzerland.
15.
Petrasch
,
J.
,
2010
, “
A Free and Open Source Monte Carlo Ray Tracing Program for Concentrating Solar Energy Research
,”
ASME 2010 4th International Conference on Energy Sustainability
, Phoenix, AZ, May 17–22,
ASME
Paper No. ES2010-90206.10.1115/ES2010-90206
16.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Haberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.10.1115/1.2769701
17.
Boettner
,
E. A.
, and
Miedler
,
L. J.
,
1963
, “
Simulating the Solar Spectrum With a Filtered High-Pressure Xenon Lamp
,”
Appl. Opt.
,
2
(
1
), pp.
105
108
.10.1364/AO.2.000105
18.
Siegel
,
R.
, and
Howell
,
J. R.
,
2002
,
Thermal Radiation Heat Transfer
,
Taylor & Francis
,
London
.
19.
Taylor
,
R. P.
, and
Luck
,
R.
,
1994
, “
A Case Study of View-Factor Rectification Procedures for Diffuse-Gray Radiation Enclosure Computations
,”
Sixth Annual Thermal and Fluids Analysis Workshop
, Brook Park, OH, August 15–19, NASA Conference Publication, pp.
115
131
.
20.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
.
21.
Kitamura
,
R.
,
Pilon
,
L.
, and
Jonasz
,
M.
,
2007
, “
Optical Constants of Silica Glass From Extreme Ultraviolet to Far Infrared at Near Room Temperature
,”
Appl. Opt.
,
46
(
33
), pp.
8118
8133
.10.1364/AO.46.008118
22.
Edwards
,
O. J.
,
1966
, “
Optical Transmittance of Fused Silica at Elevated Temperatures
,”
J. Opt. Soc. Am.
,
56
(
10
), pp.
1314
1319
.10.1364/JOSA.56.001314
23.
Brückner
,
R.
,
1970
, “
Properties and Structure of Vitreous Silica. I
,”
J. Non-Cryst. Solids
,
5
(
2
), pp.
123
175
.10.1016/0022-3093(70)90190-0
24.
Touloukian
,
Y.
, and
Dewitt
,
D.
,
1972
,
Thermal Radiative Properties: Nonmetallic Solids
(Thermophysical Properties of Matter, TPRC Data Series, Vol. 8),
IFI/Plenum
,
New York
.
25.
Möller
,
S.
,
2001
, “
Entwicklung eines Reaktors zur Solarthermischen Herstellung von Zink aus Zinkoxid zur Energiespeicherung mit Hilfe Konzentrierte Sonnenstrahlung
,” Ph.D. thesis, ETH Zurich, Zurich, Switzerland.
26.
Möller
,
S.
, and
Palumbo
,
R.
,
2001
, “
The Development of a Solar Chemical Reactor for the Direct Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
,
123
(
2
), pp.
83
90
.10.1115/1.1349717
27.
Secco
,
E. A.
,
1960
, “
Decomposition of Zinc Oxide
,”
Can. J. Chem.
,
38
(
4
), pp.
596
601
.10.1139/v60-084
28.
Weidenkaff
,
A.
,
Steinfeld
,
A.
,
Wokaun
,
A.
,
Auer
,
P.
,
Eichler
,
B.
, and
Reller
,
A.
,
1998
, “
Direct Solar Thermal Dissociation of Zinc Oxide: Condensation and Crystallisation of Zinc in the Presence of Oxygen
,”
Sol. Energy
,
65
(
1
), pp.
59
69
.10.1016/S0038-092X(98)00088-7
29.
Rath Group
, “
ALTRA KVS High Temperature Vacuum Formed Boards and Shapes
,” http://www.rath-usa.com/pds-altra-kvs-high-temp-boards.html, retrieved October 18, 2012.
30.
L'vov
,
B. V.
,
2001
, “
The Physical Approach to the Interpretation of the Kinetics and Mechanisms of Thermal Decomposition of Solids: The State of the Art
,”
Thermochim. Acta
,
373
(
2
), pp.
97
124
.10.1016/S0040-6031(01)00507-X
31.
L'vov
,
B. V.
,
1997
, “
Interpretation of Atomization Mechanisms in Electrothermal Atomic Absorption Spectrometry by Analysis of the Absolute Rates of the Processes
,”
Spectrochim. Acta, Part B
,
52
(
1
), pp.
1
23
.10.1016/S0584-8547(96)01541-8
32.
Shackelford
,
J. F.
, and
Alexander
,
W.
,
2001
,
CRC Materials Science and Engineering Handbook
,
CRC
,
Boca Raton, FL
.
33.
MPDB 5.50
,
JAHM Software
,
1999
.
34.
Heraeus, Quartz Glass—Thermal Properties, http://heraeus-quarzglas.com/en/quarzglas/thermalproperties/Thermal_properties.aspx, retrieved October 18,
2012
.
35.
Olorunyolemi
,
T.
,
Birnboim
,
A.
,
Carmel
,
Y.
,
Wilson
,
O.
,
Lloyd
,
I.
,
Smith
,
S.
, and
Campbell
,
R.
,
2002
, “
Thermal Conductivity of Zinc Oxide: From Green to Sintered State
,”
J. Am. Ceram. Soc.
,
85
(
5
), pp.
1249
1253
.10.1111/j.1151-2916.2002.tb00253.x
36.
Knovel
,
2008
, “
Thermodynamic Properties of Inorganic Substances
,” Knovel Critical Tables, 2nd ed., http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=761&VerticalID=0, retrieved October 20, 2012.
37.
Archer
,
D. G.
,
1993
, “
Thermodynamic Properties of Synthetic Sapphire (α-Al2O3), Standard Reference Material 720 and the Effect of Temperature-Scale Differences on Thermodynamic Properties
,”
J. Phys. Chem. Ref. Data
,
22
(
6
), pp.
1441
1453
.10.1063/1.555931
38.
Pankratz
,
L.
,
1982
, “
Thermodynamic Properties of Elements and Oxides
,” U.S. Bureau of Mines Bulletin, 672.
39.
Martienssen
,
W.
, and
Warlimont
,
H.
,
2006
,
Springer Handbook of Condensed Matter and Materials Data
,
Springer
,
New York
.
40.
Sasaki
,
S.
,
Masuda
,
H.
, and
Kou
,
H.
,
2002
, “
Measurement of Total Hemispherical Emittance of a Nonconducting and Semitransparent Material by a Transient Calorimetric Technique
,”
High Temp.-High Press.
,
34
(
1
), pp.
57
63
.10.1068/htwu513
41.
Sasaki
,
S.
,
Kou
,
H.
,
Masuda
,
H.
, and
Kiyohashi
,
H.
,
2003
, “
Total Hemispherical Emissivity of Glass Sheets With Different Thicknesses Measured by a Transient Calorimetric Technique
,”
High Temp.-High Press.
,
35/36
(
3
), pp.
303
312
.10.1068/htjr116
42.
Häring
,
H.-W.
,
2008
,
Industrial Gases Processing
,
Wiley-VCH Verlag GmbH & Co. KGaA
, Weinheim, Germany, Chap. 2.
43.
Welford
,
W. T.
, and
Winston
,
R.
,
1989
,
High Collection Nonimaging Optics
,
Academic
,
New York
.
44.
Loutzenhiser
,
P. G.
, and
Steinfeld
,
A.
,
2011
, “
Solar Syngas Production From CO2 and H2O in a Two-Step Thermochemical Cycle Via Zn/ZnO Redox Reactions: Thermodynamic Cycle Analysis
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12141
12147
.10.1016/j.ijhydene.2011.06.128
You do not currently have access to this content.