A dynamic numerical model of a solar cavity-type reactor for the thermal dissociation of ZnO is formulated based on a detailed radiative heat transfer analysis combining the Monte Carlo ray-tracing technique and the radiosity enclosure theory. The quartz window is treated as a semitransparent glass layer with spectrally and directionally dependent optical properties. Model validation is accomplished by comparison with experimental results obtained with a 10-kW solar reactor prototype in terms of cavity temperatures, reaction extents, and quartz window temperature distribution measured by IR thermography. The solar-to-fuel energy conversion efficiencies obtained experimentally are reported, and the various energy flows are quantified.
Issue Section:
Research Papers
Keywords:
solar reactor,
zinc oxide,
thermochemical,
radiative heat transfer,
dynamic modeling,
quartz glass,
optical,
properties,
IR thermography
Topics:
Quartz,
Solar energy,
Temperature,
Cavities,
Radiation (Physics),
Thermography,
Glass,
Fuels
References
1.
Steinfeld
, A.
, 2005
, “Solar Thermochemical Production of Hydrogen—A Review
,” Sol. Energy
, 78
(5
), pp. 603
–615
.10.1016/j.solener.2003.12.0122.
Abanades
, S.
, Charvin
, P.
, Flamant
, G.
, and Neveu
, P.
, 2006
, “Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,” Energy
, 31
(14
), pp. 2805
–2822
.10.1016/j.energy.2005.11.0023.
Smestad
, G. P.
, and Steinfeld
, A.
, 2012
, “Review: Photochemical and Thermochemical Production of Solar Fuels From H2O and CO2 Using Metal Oxide Catalysts
,” Ind. Eng. Chem. Res.
, 51
(37
), pp. 11828
–11840
.10.1021/ie30079624.
Steinfeld
, A.
, 2002
, “Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,” Int. J. Hydrogen Energy
, 27
(6
), pp. 611
–619
.10.1016/S0360-3199(01)00177-X5.
Perkins
, C.
, and Weimer
, A. W.
, 2004
, “Likely Near-Term Solar-Thermal Water Splitting Technologies
,” Int. J. Hydrogen Energy
, 29
(15
), pp. 1587
–1599
.10.1016/j.ijhydene.2004.02.0196.
Schunk
, L.
, Haeberling
, P.
, Wepf
, S.
, Wuillemin
, D.
, Meier
, A.
, and Steinfeld
, A.
, 2008
, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,” ASME J. Sol. Energy Eng.
, 130
(2
), p. 021009
.10.1115/1.28405767.
Schunk
, L.
, Lipinski
, W.
, and Steinfeld
, A.
, 2009
, “Heat Transfer Model of a Solar Receiver-Reactor for the Thermal Dissociation of ZnO—Experimental Validation at 10 kW and Scale-Up to 1 MW
,” Chem. Eng. J.
, 150
(2–3
), pp. 502
–508
.10.1016/j.cej.2009.03.0128.
Gstoehl
, D.
, Brambilla
, A.
, Schunk
, L.
, and Steinfeld
, A.
, 2008
, “A Quenching Apparatus for the Gaseous Products of the Solar Thermal Dissociation of ZnO
,” J. Mater. Sci.
, 43
(14
), pp. 4729
–4736
.10.1007/s10853-007-2351-x9.
Schunk
, L.
, Lipinski
, W.
, and Steinfeld
, A.
, 2009
, “Ablative Heat Transfer in a Shrinking Packed-Bed of ZnO Undergoing Solar Thermal Dissociation
,” AIChE J.
, 55
(7
), pp. 1659
–1666
.10.1002/aic.1178210.
Roine
, A.
, 1997
, Outokompu HSC Chemistry for Windows
, Outokompu Research
, Pori, Finland
.11.
Schunk
, L.
, and Steinfeld
, A.
, 2009
, “Kinetics of the Thermal Dissociation of ZnO Exposed to Concentrated Solar Irradiation Using a Solar-Driven Thermogravimeter in the 1800-2100 K Range
,” AIChE J.
, 55
(6
), pp. 1497
–1504
.10.1002/aic.1176512.
Dombrovsky
, L.
, Schunk
, L.
, Lipinski
, W.
, and Steinfeld
, A.
, 2009
, “An Ablation Model for the Thermal Decomposition of Porous Zinc Oxide Layer Heated by Concentrated Solar Radiation
,” Int. J. Heat Mass Transfer
, 52
(11–12
), pp. 2444
–2452
.10.1016/j.ijheatmasstransfer.2008.12.02513.
Siegel
, R.
, 1973
, “Net Radiation Method for Enclosure Systems Involving Partially Transparent Walls
,” NASA, Washington, DC, Technical Report No. TN D-7384.14.
Petrasch
, J.
, 2002
, “Thermal Modeling of Solar Chemical Reactors: Transient Behavior, Radiative Transfer
,” M.S. thesis, ETH Zurich, Zurich, Switzerland.15.
Petrasch
, J.
, 2010
, “A Free and Open Source Monte Carlo Ray Tracing Program for Concentrating Solar Energy Research
,” ASME 2010 4th International Conference on Energy Sustainability
, Phoenix, AZ, May 17–22, ASME
Paper No. ES2010-90206.10.1115/ES2010-9020616.
Petrasch
, J.
, Coray
, P.
, Meier
, A.
, Brack
, M.
, Haberling
, P.
, Wuillemin
, D.
, and Steinfeld
, A.
, 2007
, “A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,” ASME J. Sol. Energy Eng.
, 129
(4
), pp. 405
–411
.10.1115/1.276970117.
Boettner
, E. A.
, and Miedler
, L. J.
, 1963
, “Simulating the Solar Spectrum With a Filtered High-Pressure Xenon Lamp
,” Appl. Opt.
, 2
(1
), pp. 105
–108
.10.1364/AO.2.00010518.
Siegel
, R.
, and Howell
, J. R.
, 2002
, Thermal Radiation Heat Transfer
, Taylor & Francis
, London
.19.
Taylor
, R. P.
, and Luck
, R.
, 1994
, “A Case Study of View-Factor Rectification Procedures for Diffuse-Gray Radiation Enclosure Computations
,” Sixth Annual Thermal and Fluids Analysis Workshop
, Brook Park, OH, August 15–19, NASA Conference Publication, pp. 115
–131
.20.
Modest
, M. F.
, 2003
, Radiative Heat Transfer
, 2nd ed., Academic
, New York
.21.
Kitamura
, R.
, Pilon
, L.
, and Jonasz
, M.
, 2007
, “Optical Constants of Silica Glass From Extreme Ultraviolet to Far Infrared at Near Room Temperature
,” Appl. Opt.
, 46
(33
), pp. 8118
–8133
.10.1364/AO.46.00811822.
Edwards
, O. J.
, 1966
, “Optical Transmittance of Fused Silica at Elevated Temperatures
,” J. Opt. Soc. Am.
, 56
(10
), pp. 1314
–1319
.10.1364/JOSA.56.00131423.
Brückner
, R.
, 1970
, “Properties and Structure of Vitreous Silica. I
,” J. Non-Cryst. Solids
, 5
(2
), pp. 123
–175
.10.1016/0022-3093(70)90190-024.
Touloukian
, Y.
, and Dewitt
, D.
, 1972
, Thermal Radiative Properties: Nonmetallic Solids
(Thermophysical Properties of Matter, TPRC Data Series, Vol. 8), IFI/Plenum
, New York
.25.
Möller
, S.
, 2001
, “Entwicklung eines Reaktors zur Solarthermischen Herstellung von Zink aus Zinkoxid zur Energiespeicherung mit Hilfe Konzentrierte Sonnenstrahlung
,” Ph.D. thesis, ETH Zurich, Zurich, Switzerland.26.
Möller
, S.
, and Palumbo
, R.
, 2001
, “The Development of a Solar Chemical Reactor for the Direct Thermal Dissociation of Zinc Oxide
,” ASME J. Sol. Energy Eng.
, 123
(2
), pp. 83
–90
.10.1115/1.134971727.
Secco
, E. A.
, 1960
, “Decomposition of Zinc Oxide
,” Can. J. Chem.
, 38
(4
), pp. 596
–601
.10.1139/v60-08428.
Weidenkaff
, A.
, Steinfeld
, A.
, Wokaun
, A.
, Auer
, P.
, Eichler
, B.
, and Reller
, A.
, 1998
, “Direct Solar Thermal Dissociation of Zinc Oxide: Condensation and Crystallisation of Zinc in the Presence of Oxygen
,” Sol. Energy
, 65
(1
), pp. 59
–69
.10.1016/S0038-092X(98)00088-729.
Rath Group
, “ALTRA KVS High Temperature Vacuum Formed Boards and Shapes
,” http://www.rath-usa.com/pds-altra-kvs-high-temp-boards.html, retrieved October 18, 2012.30.
L'vov
, B. V.
, 2001
, “The Physical Approach to the Interpretation of the Kinetics and Mechanisms of Thermal Decomposition of Solids: The State of the Art
,” Thermochim. Acta
, 373
(2
), pp. 97
–124
.10.1016/S0040-6031(01)00507-X31.
L'vov
, B. V.
, 1997
, “Interpretation of Atomization Mechanisms in Electrothermal Atomic Absorption Spectrometry by Analysis of the Absolute Rates of the Processes
,” Spectrochim. Acta, Part B
, 52
(1
), pp. 1
–23
.10.1016/S0584-8547(96)01541-832.
Shackelford
, J. F.
, and Alexander
, W.
, 2001
, CRC Materials Science and Engineering Handbook
, CRC
, Boca Raton, FL
.33.
MPDB 5.50
, JAHM Software
, 1999
.34.
Heraeus, Quartz Glass—Thermal Properties, http://heraeus-quarzglas.com/en/quarzglas/thermalproperties/Thermal_properties.aspx, retrieved October 18,
2012
.35.
Olorunyolemi
, T.
, Birnboim
, A.
, Carmel
, Y.
, Wilson
, O.
, Lloyd
, I.
, Smith
, S.
, and Campbell
, R.
, 2002
, “Thermal Conductivity of Zinc Oxide: From Green to Sintered State
,” J. Am. Ceram. Soc.
, 85
(5
), pp. 1249
–1253
.10.1111/j.1151-2916.2002.tb00253.x36.
Knovel
, 2008
, “Thermodynamic Properties of Inorganic Substances
,” Knovel Critical Tables, 2nd ed., http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=761&VerticalID=0, retrieved October 20, 2012.37.
Archer
, D. G.
, 1993
, “Thermodynamic Properties of Synthetic Sapphire (α-Al2O3), Standard Reference Material 720 and the Effect of Temperature-Scale Differences on Thermodynamic Properties
,” J. Phys. Chem. Ref. Data
, 22
(6
), pp. 1441
–1453
.10.1063/1.55593138.
Pankratz
, L.
, 1982
, “Thermodynamic Properties of Elements and Oxides
,” U.S. Bureau of Mines Bulletin, 672.39.
Martienssen
, W.
, and Warlimont
, H.
, 2006
, Springer Handbook of Condensed Matter and Materials Data
, Springer
, New York
.40.
Sasaki
, S.
, Masuda
, H.
, and Kou
, H.
, 2002
, “Measurement of Total Hemispherical Emittance of a Nonconducting and Semitransparent Material by a Transient Calorimetric Technique
,” High Temp.-High Press.
, 34
(1
), pp. 57
–63
.10.1068/htwu51341.
Sasaki
, S.
, Kou
, H.
, Masuda
, H.
, and Kiyohashi
, H.
, 2003
, “Total Hemispherical Emissivity of Glass Sheets With Different Thicknesses Measured by a Transient Calorimetric Technique
,” High Temp.-High Press.
, 35/36
(3
), pp. 303
–312
.10.1068/htjr11642.
Häring
, H.-W.
, 2008
, Industrial Gases Processing
, Wiley-VCH Verlag GmbH & Co. KGaA
, Weinheim, Germany, Chap. 2.43.
Welford
, W. T.
, and Winston
, R.
, 1989
, High Collection Nonimaging Optics
, Academic
, New York
.44.
Loutzenhiser
, P. G.
, and Steinfeld
, A.
, 2011
, “Solar Syngas Production From CO2 and H2O in a Two-Step Thermochemical Cycle Via Zn/ZnO Redox Reactions: Thermodynamic Cycle Analysis
,” Int. J. Hydrogen Energy
, 36
(19
), pp. 12141
–12147
.10.1016/j.ijhydene.2011.06.128Copyright © 2014 by ASME
You do not currently have access to this content.