A number of studies have been performed to assess the potential of using supercritical carbon dioxide (S-CO2) in closed-loop Brayton cycles for power generation. Different configurations have been examined among which recompression and partial cooling configurations have been found very promising, especially for concentrating solar power (CSP) applications. It has been demonstrated that the S-CO2 Brayton cycle using these configurations is capable of achieving more than 50% efficiency at operating conditions that could be achieved in central receiver tower type CSP systems. Although this efficiency is high, it might be further improved by considering an appropriate bottoming cycle utilizing waste heat from the top S-CO2 Brayton cycle. The organic Rankine cycle (ORC) is one alternative proposed for this purpose; however, its performance is substantially affected by the selection of the working fluid. In this paper, a simple S-CO2 Brayton cycle, a recompression S-CO2 Brayton cycle, and a partial cooling S-CO2 Brayton cycle are first simulated and compared with the available data in the literature. Then, an ORC is added to each configuration for utilizing the waste heat. Different working fluids are examined for the bottoming cycles and the operating conditions are optimized. The combined cycle efficiencies and turbine expansion ratios are compared to find the appropriate working fluids for each configuration. It is also shown that combined recompression-ORC cycle achieves higher efficiency compared with other configurations.

References

1.
Feher
,
E. G.
,
1967
, “
Supercritical Thermodynamic Power Cycle
,”
Proceeding of the IECEC
, Miami Beach, FL, August 13–17.
2.
Angelino
,
G.
,
1967
, “
Perspectives for the Liquid Phase Compression Gas Turbine
,”
ASME J. Eng. Power
,
89
, pp.
229
237
.10.1115/1.3616657
3.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Power
,
90
, pp.
287
295
.10.1115/1.3609190
4.
Angelino
,
G.
,
1969
, “
Real Gas Effects in Carbon Dioxide Cycles
,” ASME Paper No. 69-GT-103.
5.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
(
3
), pp.
283
301
.
6.
Sarkar
,
J.
,
2009
, “
Second Law Analysis of Supercritical CO2 Recompression Brayton Cycle
,”
Energy
,
34
(
9
), pp.
1172
1178
.10.1016/j.energy.2009.04.030
7.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2009
, “
Optimization of Recompression S-CO2 Power Cycle With Reheating
,”
Energy Convers. Manage.
,
50
(
8
), pp.
1939
1945
.10.1016/j.enconman.2009.04.015
8.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2009
, “
Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1362
1371
.10.1016/j.nucengdes.2009.03.017
9.
Jeong
,
W. S.
,
Lee
,
J. I.
, and
Jeong
,
Y. H.
,
2011
, “
Potential Improvements of Supercritical Recompression CO2 Brayton Cycle by Mixing Other Gases for Power Conversion System of a SFR
,”
Nucl. Eng. Des.
,
241
(
6
), pp.
2128
2137
.10.1016/j.nucengdes.2011.03.043
10.
Turchi
,
C. S.
,
2009
, “
Supercritical CO2 for Application in Concentrating Solar Power Systems
,”
Proceedings of SCCO2 Power Cycle Symposium
, Troy, NY, April 29–30.
11.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T.
, and
Wagner
,
M.
,
2012
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for High Performance Concentrating Solar Power Systems
,”
ASME 2012 6th International Conference on Energy Sustainability
(
ES2012
), San Diego, CA, July 23–26, ASME Paper No. ES2012-91179. 10.1115/ES2012-91179
12.
“SunShot Initiative,”
2013
, U.S. Department of Energy, www1.eere.energy.gov/solar/sunshot/
13.
Hung
,
T. C.
,
Shai
,
T. Y.
,
Wang
,
S. K.
,
1997
, “
A Review of Organic Rankie Cycles (ORCs) for the Recovery of Low-Grade Waste Heat
,”
Energy
,
22
(
7
), pp.
661
667
.10.1016/S0360-5442(96)00165-X
14.
Chacartegui
,
R.
,
Muñoz de Escalona
,
J. M.
,
Sánchez
,
D.
,
Monje
,
B.
, and
Sánchez
,
T.
,
2011
, “
Alternative Cycles Based on Carbon Dioxide for Central Receiver Solar Power Plants
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
872
879
.10.1016/j.applthermaleng.2010.11.008
15.
Sánchez
,
D.
,
Brenes
,
B. M.
,
de Escalona
,
J. M. M.
, and
Chacartegui
,
R.
,
2012
, “
Non-Conventional Combined Cycle for Intermediate Temperature Systems
,”
Int. J. Energy Res.
,
37
(5), pp.
403
411
.10.1002/er.2945
16.
Kulhánek
,
M.
, and
Dostal
,
V.
,
2011
, “
Supercritical Carbon Dioxide Cycles Thermodynamic Analysis and Comparison
,” Supercritical CO2 Power Cycle Symposium, Boulder, CO, May
24
25
.
17.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Huber
,
M. L.
, “
NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP
,” National Institute of Standards and Technology, Gaithersburg, MD, NIST Standard Reference Database 23.
18.
McDonald
,
C. F.
,
2003
, “
Recuperator Considerations for Future Higher Efficiency Microturbines
,”
Appl. Therm. Eng.
,
23
(
12
), pp.
1463
1487
.10.1016/S1359-4311(03)00083-8
19.
Demirkaya
,
G.
,
Besarati
,
S.
,
Vasquez Padilla
,
R.
,
Ramos Archibold
,
A.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032002
.10.1115/1.4005922
20.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.10.1016/j.rser.2010.07.006
21.
Rayegan
,
R.
, and
Tao
,
Y. X.
,
2011
, “
A Procedure to Select Working Fluids for Solar Organic Rankine Cycles (ORCs)
,”
Renewable Energy
,
36
(
2
), pp.
659
670
.10.1016/j.renene.2010.07.010
You do not currently have access to this content.