The use of concentrated solar radiation as the source of process heat to drive biomass gasification offers potential increases in yield and efficiency over conventional approaches to gasification but requires that temporal variations in output be alleviated with thermal storage or hybridization. The impacts of thermal storage and degree of hybridization on the efficiency, specific yield, and variation in output of a solar gasification facility are explored through parametric simulations of a generalized 100 MWth solar receiver facility. Nominal syngas yield rates from 1.5 to 50 tonnes/h are considered along with molten carbonate salt storage volumes from 200 to 6500 m3. High solar fractions (95%) result in a maximum thermal efficiency of 79% and specific syngas yield of 139 GJ/ha while low solar fractions (10%) for highly hybridized facilities reduce the thermal efficiency to 72% and specific yield to 88 GJ/ha, akin to conventional gasification processes. Solar fractions greater than 95% result in large variation in synthesis gas yield rate, varying as much as 30:1 throughout the year. This variation can be reduced to below a 4:1 ratio, more acceptable for downstream processes, through either hybridization to achieve solar fractions less than 50% with little to no thermal storage, or alternately the use of 5600 m3 of molten carbonate salt to allow for solar fractions up to 87%.

References

1.
U.S. Energy Information Administration (EIA)
2012
, “
Annual Energy Outlook 2012
,” DOE/EIA-0383(2012), Washington DC.
2.
Tilman
,
D.
,
Hill
,
J.
, and
Lehman
,
C.
,
2006
, “
Carbon-Negative Biofuels From Low-Input High-Diversity Grassland Biomass
,”
Science
,
314
(
5805
), pp.
1598
1600
.10.1126/science.1133306
3.
Cheng
,
J.
,
2010
,
Biomass to Renewable Energy Processes
,
CRC Press
,
Boca Raton, FL
, pp.
437
489
.
4.
Steinfeld
,
A.
, and
Meier
,
A.
,
2004
,
Encyclopedia of Energy
,
Elsevier
,
New York
, pp.
623
637
.
5.
Gregg
,
D. W.
,
Taylor
,
R. W.
, and
Campbell
,
J. H.
,
1980
, “
Solar Gasification of Coal, Activated Carbon, Coke and Coal and Biomass Mixture
,”
Sol. Energy
,
25
(
4
), pp.
353
364
.10.1016/0038-092X(80)90347-3
6.
Taylor
,
R. W.
,
Berjoan
,
R.
, and
Coutures
,
J.
,
1983
, “
Solar Gasification of Carbonaceous Materials
,”
Sol. Energy
,
30
(
6
), pp.
513
525
.10.1016/0038-092X(83)90063-4
7.
Murray
,
J. P.
, and
Fletcher
,
E. A.
,
1994
, “
Reaction of Steam With Cellulose in a Fluidized Bed Using Concentrated Sunlight
,”
Energy
,
19
(
10
), pp.
1083
1098
.10.1016/0360-5442(94)90097-3
8.
Flechsenhar
,
M.
, and
Sasse
,
C.
,
1995
, “
Solar Gasification of Biomass Using Oil Shale and Coal as Candidate Materials
,”
Energy
,
20
(
8
), pp.
803
810
.10.1016/0360-5442(95)00023-A
9.
Tamaura
,
Y.
,
Tsuji
,
M.
, and
Yoshida
,
S.
,
1999
, “
Solar Gasification of Coal Using Carbonate Molten Salt Reactor
,”
J. Phys. IV
,
9
(
3
), pp.
373
378
.10.1051/jp4:1999358
10.
Matsunami
,
J.
,
Yoshida
,
S.
, and
Oku
,
Y.
,
2000
, “
Coal Gasification by CO2 Gas Bubbling in Molten Salt for Solar/Fossil Energy Hybridization
,”
Sol. Energy
,
68
(
3
), pp.
257
261
.10.1016/S0038-092X(99)00074-2
11.
Kodama
,
T.
,
Kondoh
,
Y.
, and
Tamagawa
,
T.
,
2002
, “
Fluidized Bed Coal Gasification With CO2 Under Direct Irradiation With Concentrated Visible Light
,”
Energy Fuels
,
16
(
5
), pp.
1264
1270
.10.1021/ef020053x
12.
Adinberg
,
R.
,
Epstein
,
M.
, and
Karni
,
J.
,
2004
, “
Solar Gasification of Biomass: A Molten Salt Pyrolysis Study
,”
ASME J. Sol. Energy Eng.
,
126
(
3
), pp.
850
857
.10.1115/1.1753577
13.
Trommer
,
D.
,
Noembrini
,
F.
, and
Fasciana
,
M.
,
2005
, “
Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power—I. Thermodynamic and Kinetic Analyses
,”
Int. J. Hydrogen Energy
,
30
(
6
), pp.
605
618
.10.1016/j.ijhydene.2004.06.002
14.
Z'Graggen
,
A.
,
Haueter
,
P.
, and
Trommer
,
D.
,
2006
, “
Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power—II Reactor Design, Testing, and Modeling
,”
Int. J. Hydrogen Energy
,
31
(
6
), pp.
797
811
.10.1016/j.ijhydene.2005.06.011
15.
Perkins
,
C. M.
,
Woodruff
,
B.
, and
Andrews
,
L.
,
2008
, “
Synthesis Gas Production by Rapid Solar Thermal Gasification of Corn Stover
,” 14th Biennial CSP SolarPACES, Las Vegas, NV, March 4–7, pp.
1
8
.
16.
Piatkowski
,
N.
, and
Steinfeld
,
A.
,
2008
, “
Solar-Driven Coal Gasification in a Thermally Irradiated Packed-Bed Reactor
,”
Energy Fuels
,
22
(
3
), pp.
2043
2052
.10.1021/ef800027c
17.
Piatkowski
,
N.
,
Wieckert
,
C.
, and
Steinfeld
,
A.
,
2009
, “
Experimental Investigation of a Packed-Bed Solar Reactor for the Steam-Gasification of Carbonaceous Feedstocks
,”
Fuel Process. Technol.
,
90
(
3
), pp.
360
366
.10.1016/j.fuproc.2008.10.007
18.
Melchior
,
T.
,
Perkins
,
C.
, and
Lichty
,
P.
,
2009
, “
Solar-Driven Biochar Gasification in a Particle-Flow Reactor
,”
Chem. Eng. Process.
,
48
(
8
), pp.
1279
1287
.10.1016/j.cep.2009.05.006
19.
Lichty
,
P.
,
Perkins
,
C.
, and
Woodruff
,
B.
,
2010
, “
Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
011012
.10.1115/1.4000356
20.
Kodama
,
T.
,
Gokon
,
N.
, and
Enomoto
,
S.
,
2010
, “
Coal Coke Gasification in a Windowed Solar Chemical Reactor for Beam-Down Optics
,”
ASME J. Sol. Energy Eng.
,
132
(
4
), p.
041004
.10.1115/1.4002081
21.
Gokon
,
N.
,
Ono
,
R.
, and
Hatamachi
,
T.
,
2012
, “
CO2 Gasification of Coal Cokes Using Internally Circulating Fluidized Bed Reactor by Concentrated Xe-Light Irradiation for Solar Gasification
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
12128
12137
.10.1016/j.ijhydene.2012.05.133
22.
Kribus
,
A.
,
Zaibel
,
R.
, and
Carey
,
D.
,
1998
, “
A Solar-Driven Combined Cycle Power Plant
,”
Sol. Energy
,
62
(
2
), pp.
121
129
.10.1016/S0038-092X(97)00107-2
23.
Sudiro
,
M.
, and
Bertucco
,
A.
,
2007
, “
Synthetic Fuels by a Limited CO2 Emission Process Which Uses Both Fossil and Solar Energy
,”
Energy Fuels
,
21
(
6
), pp.
3668
3675
.10.1021/ef7003255
24.
Kaniyal
,
A. A.
,
van Eyk
,
P. J.
, and
Nathan
,
G. J.
,
2013
, “
Polygeneration of Liquid Fuels and Electricity by the Atmospheric Pressure Hybrid Solar Gasification of Coal
,”
Energy Fuels
,
27
(
6
), pp.
3538
3555
.10.1021/ef400198v
25.
Kaniyal
,
A. A.
,
van Eyk
,
P. J.
, and
Nathan
,
G. J.
,
2013
, “
Dynamic Modelling of the Co-Production of Liquid Fuels and Electricity From a Hybrid Solar Gasifier With Various Fuel Blends
,”
Energy Fuels
,
27
(
6
), pp.
3556
3569
.10.1021/ef400217n
26.
Sheu
,
E. J.
,
Mitsos
,
A.
, and
Eter
,
A. A.
,
2012
, “
A Review of Hybrid Solar—Fossil Fuel Power Generation Systems and Performance Metrics
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041006
.10.1115/1.4006973
27.
Hathaway
,
B. J.
,
Davidson
,
J. H.
, and
Kittelson
,
D. B.
,
2011
, “
Solar Gasification of Biomass: Kinetics of Pyrolysis and Steam Gasification in Molten Salt
,”
J. Sol. Energy Eng.
,
133
(
2
), p.
021011
.10.1115/1.4003680
28.
Hathaway
,
B. J.
,
Honda
,
M.
, and
Kittelson
,
D. B.
,
2012
, “
Steam Gasification of Plant Biomass Using Molten Carbonate Salts
,”
Energy
,
49
(
1
), pp.
211
217
.10.1016/j.energy.2012.11.006
29.
Zvegilsky
,
D.
,
Adinberg
,
R.
, and
Epstein
,
M.
,
2012
, “
Pyrolysis and Gasification of Rice Husks and the Solar Option
,”
Proceedings of the 2012 Solar Power and Chemical Energy Systems Conference
(SolarPACES 2012), Marrakech, Morocco, September 11–14.
30.
Hathaway
,
B. J.
,
Lipiński
,
W.
, and
Davidson
,
J. H.
,
2012
, “
Heat Transfer in a Solar Cavity Receiver: Design Considerations
,”
Numer. Heat Transfer, Part A
,
62
(
5
), pp.
445
461
.10.1080/10407782.2012.703471
31.
Coyle
,
R. T.
,
Thomas
,
T. M.
, and
Schissel
,
P.
,
1985
, “
The Corrosion of Materials in Molten Alkali Carbonate Salt at 900 °C
,” Solar Energy Research Institute, Golden, CO, Paper No. SRI/TR-255-2553.
32.
Kohl
,
A. L.
,
Harty
,
R. B.
, and
Johanson
,
J. G.
,
1978
, “
Molten Salt Coal Gasification Process
,”
Chem. Eng. Prog.
,
74
(
8
), pp.
73
79
.
33.
Ben-Zvi
,
R.
,
Epstein
,
M.
, and
Segal
,
A.
,
2011
, “
Coupling Solar Tower System and Molten Salt Storage for the Generation of Electricity Using the Beam-Down Optics
,”
2011 Solar Power and Chemical Energy Systems Conference (SolarPACES 2011), Granada, Spain, September 20–23
.
34.
Martinek
,
J.
,
Channel
,
M.
, and
Lewandowski
,
A.
,
2010
, “
Considerations for the Design of Solar-Thermal Chemical Processes
,”
ASME J. Sol. Energy Eng.
,
132
(
3
), p. 031013.10.1115/1.4001474
35.
George
,
R.
, and
Maxwell
,
E.
,
1999
, “
High-Resolution Maps of Solar Collector Performance Using a Climatological Solar Radiation Model
,”
ASES Annual Conference (Solar 99), Portland, ME, June 12–16
,
B. W. R.
Campbell-Howe
, ed.,
American Solar Energy Society
,
Boulder, CO
, pp.
243
248
.
36.
Milbrandt
,
A.
,
2005
, “
A Geographic Perspective on the Current Biomass Resource Availability in the United States
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-560-39181.
37.
Wilcox
,
S.
, and
Marion
,
W.
,
2008
, “
Users Manual for TMY3 Data Sets
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-581-43156.
38.
Siegel
,
N. P.
,
Miller
,
J. E.
, and
Ermanoski
,
I.
,
2013
, “
Factors Affecting the Efficiency of Solar Driven Metal Oxide Thermochemical Cycles
,”
Ind. Eng. Chem. Res.
,
52
(
9
), pp.
3276
3286
.10.1021/ie400193q
39.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
Blackwell Science, Limited
,
Malden, MA
.
40.
Berdahl
,
P.
, and
Martin
,
M.
,
1984
, “
Emissivity of Clear Skies
,”
Sol. Energy
,
32
(
5
), pp.
663
664
.10.1016/0038-092X(84)90144-0
41.
Churchill
,
S. W.
, and
Chu
,
H. H.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.10.1016/0017-9310(75)90243-4
42.
McAdams
,
W. H.
,
1954
,
Heat Transmission
,
McGraw-Hill
,
New York
, p.
321
.
43.
Churchill
,
S.
, and
Bernstein
,
M.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
300
306
.10.1115/1.3450685
44.
Ladwing
,
M.
, and
Stevens
,
M.
,
2011
, “
KA26 Combined Cycle Power Plant as Ideal Solution to Balance Load Fluctuations
,” Power Plant Technology Forum, Hannover, Germany, April 5–8.
You do not currently have access to this content.