The use of concentrated solar radiation as the source of process heat to drive biomass gasification offers potential increases in yield and efficiency over conventional approaches to gasification but requires that temporal variations in output be alleviated with thermal storage or hybridization. The impacts of thermal storage and degree of hybridization on the efficiency, specific yield, and variation in output of a solar gasification facility are explored through parametric simulations of a generalized 100 MWth solar receiver facility. Nominal syngas yield rates from 1.5 to 50 tonnes/h are considered along with molten carbonate salt storage volumes from 200 to 6500 m3. High solar fractions (95%) result in a maximum thermal efficiency of 79% and specific syngas yield of 139 GJ/ha while low solar fractions (10%) for highly hybridized facilities reduce the thermal efficiency to 72% and specific yield to 88 GJ/ha, akin to conventional gasification processes. Solar fractions greater than 95% result in large variation in synthesis gas yield rate, varying as much as 30:1 throughout the year. This variation can be reduced to below a 4:1 ratio, more acceptable for downstream processes, through either hybridization to achieve solar fractions less than 50% with little to no thermal storage, or alternately the use of 5600 m3 of molten carbonate salt to allow for solar fractions up to 87%.
Skip Nav Destination
Article navigation
February 2014
Research-Article
Integration of Solar Gasification With Conventional Fuel Production: The Roles of Storage and Hybridization
Jane H. Davidson
Jane H. Davidson
1
e-mail: jhd@me.umn.edu
University of Minnesota,
Minneapolis, MN 55455
Department of Mechanical Engineering
,University of Minnesota,
111 Church Street S.E.
,Minneapolis, MN 55455
1Corresponding author.
Search for other works by this author on:
Jane H. Davidson
e-mail: jhd@me.umn.edu
University of Minnesota,
Minneapolis, MN 55455
Department of Mechanical Engineering
,University of Minnesota,
111 Church Street S.E.
,Minneapolis, MN 55455
1Corresponding author.
Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING. Manuscript received June 24, 2013; final manuscript received October 2, 2013; published online December 12, 2013. Assoc. Editor: Aldo Steinfeld.
J. Sol. Energy Eng. Feb 2014, 136(1): 010906 (10 pages)
Published Online: December 12, 2013
Article history
Received:
June 24, 2013
Revision Received:
October 2, 2013
Citation
Hathaway, B. J., Kittelson, D. B., and Davidson, J. H. (December 12, 2013). "Integration of Solar Gasification With Conventional Fuel Production: The Roles of Storage and Hybridization." ASME. J. Sol. Energy Eng. February 2014; 136(1): 010906. https://doi.org/10.1115/1.4025971
Download citation file:
Get Email Alerts
Real-Time Dynamic Performance Enhancement for Solar-Powered Pumping Systems Using PI-Based MPPT Techniques
J. Sol. Energy Eng (December 2023)
Related Articles
Tomography-Based Analysis of Radiative Transfer in Reacting Packed Beds Undergoing a Solid-Gas Thermochemical Transformation
J. Heat Transfer (June,2010)
Highly Efficient IGFC Hybrid Power Systems Employing Bottoming Organic Rankine Cycles With Optional Carbon Capture
J. Eng. Gas Turbines Power (February,2012)
Options for Biomass Utilization in Coal Fired Power Stations
J. Thermal Sci. Eng. Appl (December,2009)
Related Proceedings Papers
Related Chapters
Hydro Tasmania — King Island Case Study
Energy and Power Generation Handbook: Established and Emerging Technologies
Utilities’ Perspective of Spent Fuel Storage
Global Applications of the ASME Boiler & Pressure Vessel Code
Energy Options and Terms: An Introduction
Energy Supply and Pipeline Transportation: Challenges & Opportunities