A tandem solar cell architecture of silicon and germanium solar cells in a mechanical (stack like) arrangement is evaluated to increase the efficiency of light absorption in the far infrared region from 1107 nm to 1907 nm wavelength, which constitutes about 14.5% of the power intensity in the solar AM 1.5 spectrum. In this work, the technical feasibility of tandem solar cells is investigated. Here, we report on detailed electrical and optical simulations of this structure quantifying the various theoretical and practical loss mechanisms in the encapsulation, interfaces, and in the device and indicate that a relative efficiency improvement of 20% may be attainable with silicon and germanium solar cells in this configuration. The optical and electrical parameters for silicon and germanium simulation models were extracted from experimental devices and material vendors. The developed simulation models were validated by comparing the performance of stand-alone silicon and germanium solar cells with experimental devices reported in the literature.

References

1.
Mehta
,
S.
,
2012
, “
PV Technology, Production and Cost Outlook: 2012–2016: Green Tech Media Report
,” accessed: October 2, 2012, http://www.greentechmedia.com/research/report/pv-supply-2012
2.
Woodhouse
,
M.
,
James
,
T.
,
Margolis
,
R.
,
Feldman
,
D.
,
Merkel
,
T.
, and
Goodrich
,
A.
,
2011
, “
An Economic Analysis of Photovoltaics Versus Traditional Energy Sources: Where Are We Now and Where Might We Be in the Near Future?
,” 37th IEEE Photovoltaic Specialists Conference (
PVSC 37
) Seattle,
WA
, June 19–24.10.1109/PVSC.2011.6186448
3.
Zhao
,
J.
,
Wang
,
A.
, and
Green
,
M. A.
,
1999
, “
24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates
,”
Prog. Photovoltaics.
,
7
(
6
), pp.
471
474
.10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
4.
Nayak
,
P. K.
,
Bisquert
,
J.
, and
Cahen
,
D.
,
2011
, “
Assessing Possibilities and Limits for Solar Cells
,”
Adv. Mater.
,
23
(
25
), pp.
2870
2876
.10.1002/adma.201100877
5.
Henry
,
C. H.
,
1980
, “
Limiting Efficiencies of Ideal Single and Multiple Energy Gap Terrestrial Solar Cells
,”
J. Appl. Phys.
,
51
(
8
), pp.
4494
4500
.10.1063/1.328272
6.
King
,
R. R.
,
Law
,
D. C.
,
Edmondson
,
K. M.
,
Fetzer
,
C. M.
,
Kinsey
,
G. S.
,
Yoon
,
H.
,
Sherif
,
R. A.
, and
Karam
,
N. H.
,
2007
, “
40% Efficient Metamorphic GaInP/GaInAs/Ge Multijunction Solar Cells
,”
Appl. Phys. Lett.
,
90
(
18
), p.
183516
.10.1063/1.2734507
7.
Bertness
,
K. A.
,
Kurtz
,
S. R.
,
Friedman
,
D. J.
,
Kibbler
,
A. E.
,
Kramer
,
C.
, and
Olson
,
J. M.
,
1990
, “
29.5%‐Efficient GaInP/GaAs Tandem Solar Cells
,”
Appl. Phys. Lett.
,
65
(
8
), pp.
989
991
.10.1063/1.112171
8.
Karam
,
N. H.
,
King
,
R.
,
Cavicchi
,
T. B.
,
Krut
,
D. B.
,
Ermer
,
J. H.
,
Haddad
,
M.
,
Cai
,
L.
,
Joslin
,
D. E.
,
Takahashi
,
M.
,
Eldredge
,
J. W.
,
Nishikawa
,
W. T.
,
Lillington
,
D. T.
,
Keyes
,
B. M.
, and
Ahrenkiel
,
R. K.
,
1999
, “
Development and Characterization of High-Efficiency Ga0.5In0.5P/GaAs/Ge Dual- and Triple-Junction Solar Cells
,”
IEEE Trans. Electron Devices
,
46
(
10
), pp.
2116
2125
.10.1109/16.792006
9.
Stanbery
,
B. J.
,
King
,
B. D.
,
Burgess
,
R. M.
,
McClelland
,
R. W.
,
Kim
,
N. P.
,
Gale
,
R. P.
, and
Mickelsen
,
R. A.
,
1990
, “
Lightweight Tandem GaAs/CuInSe2 Solar Cells
,”
IEEE Trans. Electron Devices
,
37
(
2
), pp.
438
442
.10.1109/16.46380
10.
Burgess
,
R. M.
,
Flora
,
C.
, and
Schneider
,
M.
,
1990
, “
Performance Evaluation of Cleft GaAs/CuInSe2 Tandem Cell Circuits Through Solar Simulator Testing and Computer Modeling
,”
21st IEEE Photovoltaic Specialists Conference
, Kissimmee, FL, May 21–25, Vol.
2
, IEEE, pp.
1340
1345
.10.1109/PVSC.1990.111829
11.
Gale
,
R. P.
,
McClelland
,
R. W.
,
Dingle
,
B. D.
,
Gormley
,
J. V.
, and
Burgess
,
R. M.
,
1990
, “
High-Efficiency GaAs/CuInSe2 and AlGaAs/CuInSe2 Thin-Film Tandem Solar Cells
,”
21st IEEE Photovoltaic Specialists Conference
, Kissimmee, FL, May 21–25, Vol.
1
, IEEE, pp.
53
57
.10.1109/PVSC.1990.111590
12.
Burgess
,
R. M.
,
Stanbery
,
B. J.
,
Mickelsen
,
R. A.
,
Avery
,
J. E.
,
McClelland
,
R. W.
,
King
,
B. D.
,
Boden
,
M. J.
, and
Gale
,
R. P.
,
1988
, “
High Efficiency GaAs/CuInSe2 Tandem Junction Solar Cells
,”
20th IEEE Photovoltaic Specialists Conference
, Las Vegas, NV, September 26–30, Vol.
1
, pp.
457
461
.10.1109/PVSC.1988.105743
13.
Mitchell
,
K.
,
Eberspacher
,
C.
,
Ermer
,
J.
, and
Pier
,
D.
,
1988
, “
Single and Tandem Junction CuInSe2 Cell and Module Technology
,”
20th IEEE Photovoltaic Specialists Conference
, Las Vegas, NV, September 26–30, Vol.
2
, pp.
1384
1389
.10.1109/PVSC.1988.105935
14.
Liska
,
P.
,
Thampi
,
K. R.
,
Grätzel
,
M.
,
Brémaud
,
D.
,
Rudmann
,
D.
,
Upadhyaya
,
H. M.
, and
Tiwari
,
A. N.
,
2006
, “
Nanocrystalline Dye-Sensitized Solar Cell/Copper Indium Gallium Selenide Thin-Film Tandem Showing Greater Than 15% Conversion Efficiency
,”
Appl. Phys. Lett.
,
88
(
20
), p.
203103
.10.1063/1.2203965
15.
Jeong
,
W. S.
,
Lee
,
J. W.
,
Jung
,
S.
,
Yun
,
J. H.
, and
Park
,
N. G.
,
2011
, “
Evaluation of External Quantum Efficiency of a 12.35% Tandem Solar Cell Comprising Dye-Sensitized and CIGS Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
95
(
12
), pp.
3419
3423
.10.1016/j.solmat.2011.07.038
16.
Shpaisman
,
H.
,
Niitsoo
,
O.
,
Lubomirsky
,
I.
, and
Cahen
,
D.
,
2008
, “
Can Up- and Down-Conversion and Multi-Exciton Generation Improve Photovoltaics?
,”
Sol. Energy Mater. Sol. Cells
,
92
(
12
), pp.
1541
1546
.10.1016/j.solmat.2008.08.006
17.
Trupke
,
T.
,
Green
,
M. A.
, and
Würfel
,
P.
,
2002
, “
Improving Solar Cell Efficiencies by Up-Conversion of Sub-Band-Gap Light
,”
J. Appl. Phys.
,
92
(
7
), pp.
4117
4112
.10.1063/1.1505677
18.
Trupke
,
T.
,
Green
,
M. A.
, and
Würfel
,
P.
,
2002
, “
Improving Solar Cell Efficiencies by Down-Conversion of High-Energy Photons
,”
J. Appl. Phys
,
92
(
7
), pp.
1668
1774
.10.1063/1.1492021
19.
Green
,
M. A.
,
Emery
,
K.
,
Hishikawa
,
Y.
,
Warta
,
W.
, and
Dunlop
,
E. D.
,
2012
, “
Solar Cell Efficiency Tables (Version 39)
,”
Prog. Photovoltaics
,
20
(
1
), pp.
12
20
.10.1002/pip.2163
20.
Shockley
,
W.
, and
Queisser
,
H. J.
,
1961
, “
Detailed Balance Limit of Efficiency of p-n Junction Solar Cells
,”
J. Appl. Phys.
,
32
(
5
), pp.
510
519
.10.1063/1.1736034
21.
Song
,
J.
,
Li
,
S. S.
,
Huang
,
C. H.
,
Anderson
,
T. J.
, and
Crisalle
,
O. D.
,
2003
, “
Modeling and Simulation of a CuGaSe/sub 2//Cu(In/sub 1-x/,Ga/sub x/)Se/sub 2/ Tandem Solar Cell
,”
Proceedings of 3rd World Conference on Photovoltaic Energy Conversion
, Osaka, Japan, May 11–18, Vol.
1
, pp.
555
558
.
22.
Nishiwaki
,
S.
,
Siebentritt
,
S.
,
Walk
,
P.
, and
Ch. Lux-Steiner
,
M.
,
2003
, “
A Stacked Chalcopyrite Thin-Film Tandem Solar Cell With 1.2 V Open-Circuit Voltage
,”
Prog. Photovoltaics
,
11
(
4
), pp.
243
248
.10.1002/pip.486
23.
Seyrling
,
S.
,
Calnan
,
S.
,
Bücheler
,
S.
,
Hüpkes
,
J.
,
Wenger
,
S.
,
Brémaud
,
D.
,
Zogg
,
H.
, and
Tiwari
,
A. N.
,
2009
, “
CuIn1−xGaxSe2 Photovoltaic Devices for Tandem Solar Cell Application
,”
Thin Solid Films
,
517
(
7
), pp.
2411
2414
.10.1016/j.tsf.2008.11.038
24.
Beiley
,
Z. M.
, and
McGehee
,
M. G.
,
2012
, “
Modeling Low Cost Hybrid Tandem Photovoltaics With the Potential for Efficiencies Exceeding 20%
,”
Energy Environ. Sci.
,
5
(
11
), pp.
9173
9179
.10.1039/c2ee23073a
25.
Coutts
,
T. J.
,
Ward
,
S. J.
,
Young
,
D. L.
,
Emery
,
K. A.
,
Gessert
,
T. A.
, and
Noufi
,
R.
,
2003
, “
Critical Issues in the Design of Polycrystalline, Thin-Film Tandem Solar Cells
,”
Prog. Photovoltaics
,
11
(
6
), pp.
359
375
.10.1002/pip.491
26.
Neuhaus
,
D. H.
, and
Münzer
,
A.
,
2007
, “
Industrial Silicon Wafer Solar Cells
,”
Adv. OptoElectron.
,
2007
, p.
24521
.10.1155/2007/24521
27.
Hubner
,
A.
,
Aberle
,
A. G.
, and
Hezel
,
R.
,
1997
, “
Novel Cost-Effective Bifacial Silicon Solar Cells With 19.4% Front and 18.1% Rear Efficiency
,”
Appl. Phys. Lett.
,
70
(
8
), pp.
1008
1010
.10.1063/1.118466
28.
Becker
,
M.
,
Gosele
,
U.
,
Hofmann
,
A.
, and
Christiansen
,
S.
,
2009
, “
Highly p-Doped Regions in Silicon Solar Cells Quantitatively Analyzed by Small Angle Beveling and Micro-Raman Spectroscopy
,”
J. Appl. Phys.
,
106
(
7
), p.
074515
.10.1063/1.3236571
29.
Fellmeth
,
T.
,
Mack
,
S.
,
Bartsch
,
J.
,
Erath
,
D.
,
Jäger
,
U.
,
Preu
,
R.
,
Clement
,
F.
, and
Biro
,
D.
,
2011
, “
20.1% Efficient Silicon Solar Cell With Aluminum Back Surface Field
,”
IEEE Electron Device Lett.
,
32
(
8
), pp.
1101
1103
.10.1109/LED.2011.2157656
30.
Aberle
,
A. G.
,
2000
, “
Surface Passivation of Crystalline Silicon Solar Cells: A Review
,”
Prog. Photovoltaics
,
8
(
5
), pp.
473
487
.10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO;2-D
31.
Zhao
,
L.
,
Zhou
,
C. L.
,
Li
,
H. L.
,
Diao
,
H. W.
, and
Wang
,
W. J.
,
2008
, “
Design Optimization of Bifacial HIT Solar Cells on p-Type Silicon Substrates by Simulation
,”
Sol. Energy Mater. Sol. Cells
,
92
(
6
), pp.
673
681
.10.1016/j.solmat.2008.01.018
32.
Zhang
,
C.
, and
Wei
,
W.
,
2011
, “
Model Optimization of Nanocrystalline Si:H HIT Solar Cells
,” International Conference on Electric Information and Control Engineering (
ICEICE
), Wuhan, China, April 15–17, pp.
1464
1468
.10.1109/ICEICE.2011.5777621
33.
Adachi
,
S.
,
1999
,
Optical Constants of Crystalline and Amorphous Semiconductors—Numerical Data and Graphical Illustration
,
Kluwer Academic Publishers
.
34.
Virginia Semiconductor
,
2012
, “
General Properties of Si, Ge, SiGe, SiO2 and Si3N4
,” accessed Last Accessed: March 10, 2012, www.virginiasemi.com/pdf/generalpropertiesSi62002.pdf
35.
Kang
,
M. H.
,
Ryu
,
K. R.
,
Upadhyaya
,
A.
, and
Rohatgi
,
A.
,
2011
, “
Optimization of SiN AR Coating for Si Solar Cells and Modules Through Quantitative Assessment of Optical and Efficiency Loss Mechanism
,”
Prog. Photovoltaics
,
19
(
8
), pp.
983
990
.10.1002/pip.1095
36.
Mohamed
,
H. A.
, and
Ali
,
H. M.
,
2008
, “
Characterization of ITO/CdO/Glass Thin Films Evaporated by Electron Beam Technique
,”
Sci. Technol. Adv. Mater.
,
9
(
2
), p.
025016
.10.1088/1468-6996/9/2/025016
37.
Ding
,
K.
,
Kirchartz
,
T.
,
Pieters
,
B. E.
,
Ulbrich
,
C.
,
Ermes
,
A. M.
,
Schicho
,
S.
,
Lambertz
,
A.
,
Carius
,
R.
, and
Rau
,
U.
,
2011
, “
Characterization and Simulation of a-Si:H/μc-Si:H Tandem Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
95
(
12
), pp.
3318
3327
.10.1016/j.solmat.2011.07.023
38.
Posthuma
,
N. E.
,
Flamand
,
G.
,
Geens
,
W.
, and
Poortmans
,
J.
,
2005
, “
Surface Passivation for Germanium Photovoltaic Cells
,”
Sol. Energy Mater. Sol. Cells
,
88
, pp.
37
45
.10.1016/j.solmat.2004.10.005
39.
Posthuma
,
N. E.
,
Van der Heide
,
J.
,
Flamand
,
G.
, and
Poortmans
,
J.
,
2007
, “
Emitter Formation and Contact Realization by Diffusion for Germanium Photovoltaic Devices
,”
IEEE Trans. Electron Devices
,
54
(
5
), pp.
1210
1215
.10.1109/TED.2007.894610
40.
Posthuma
,
N. E.
,
Flamand
,
G.
, and
Poortmans
,
J.
,
2003
, “
Development of Stand-Alone Germanium Solar Cells for Application in Space Using Spin-on Diffusants
,”
Proceedings of 3rd World Conference on Photovoltaic Energy Conversion
, Osaka, Japan, May 11–18, Vol.
1
, pp.
777
780
.
41.
Liu
,
Y.
,
Sun
,
Y.
, and
Rockett
,
A.
,
2012
, “
A New Simulation Software of Solar Cells—wxAMPS
,”
Sol. Energy Mater. Sol. Cells
,
98
, pp.
124
128
.10.1016/j.solmat.2011.10.010
42.
Fonash
,
S. J.
,
2010
,
Solar Cell Device Physics
,
Elsevier
,
New York
.
43.
Burgelman
,
M.
,
Verschraegen
,
J.
,
Degrave
,
S.
, and
Nollet
,
P.
,
2004
, “
Modeling Thin-Film PV Devices
,”
Prog. Photovoltaics
,
12
(
2-3
), pp.
143
153
.10.1002/pip.524
44.
Grunow
,
P.
, and
Krauter
,
S.
,
2006
, “
Modelling of the Encapsulation Factors for Photovoltaic Modules
,”
Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion
, Waikoloa, HI, May 7–12, Vol.
2
, pp.
2152
2155
.10.1109/WCPEC.2006.279931
45.
Heavens
,
O. S.
,
1965
,
Optical Properties of Thin Solid Films
,
Dover
,
New York
.
46.
Papet
,
P.
,
Nichiporuk
,
O.
,
Kaminski
,
A.
,
Rozier
,
Y.
,
Kraiem
,
J.
,
Lelievre
,
J. F.
,
Chaumartin
,
A.
,
Fave
,
A.
, and
Lemiti
,
M.
,
2006
, “
Pyramidal Texturing of Silicon Solar Cell With TMAH Chemical Anisotropic Etching
,”
Sol. Energy Mater. Sol. Cells
,
90
(
15
), pp.
2319
2328
.10.1016/j.solmat.2006.03.005
47.
French
,
R. H.
,
Rodriguez-Parada
,
J. M.
,
Yang
,
M. K.
,
Derryberry
,
R. A.
,
Lemon
,
M. F.
,
Brown
,
M. J.
,
Haeger
,
C. R.
,
Samuels
,
S. L.
,
Romano
,
E. C.
, and
Richardson
,
R. E.
,
2009
, “
Optical Properties of Materials for Concentrator Photovoltaic Systems
,”
34th IEEE Photovoltaic Specialists Conference
, Philadelphia, PA, June 7–2, p. 349–399.10.1109/PVSC.2009.5411657
48.
Rubin
,
M.
,
1985
, “
Optical Properties of Soda Lime Silica Glasses
,”
Sol. Energy Mater.
,
12
, pp.
275
288
.10.1016/0165-1633(85)90052-8
49.
Mishima
,
T.
,
Taguchi
,
M.
,
Sakata
,
H.
, and
Maruyama
,
E.
,
2010
, “
Development Status of High-Efficiency HIT Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
95
(
1
), pp.
18
21
.10.1016/j.solmat.2010.04.030
You do not currently have access to this content.