Concentrating solar power plants (CSPs) are being explored as the leading source of renewable energy for future power generation. Storing sun's energy in the form of latent thermal energy of a phase change material (PCM) is desirable for use on demand including times when solar energy is unavailable. Considering a latent thermal energy storage (LTES) system incorporating heat pipes to enhance heat transfer between the heat transfer fluid (HTF) and the PCM, this paper explores the dynamic response of the LTES system subjected to repeated cycles of charging and discharging. A transient computational analysis of a shell-and-tube LTES embedded with two horizontal heat pipes is performed for repeated charging and discharging of the PCM to analyze the dynamic performance of the LTES, and the augmentation in the cyclic performance of the LTES embedded with heat pipes is investigated. A model low temperature phase change material system is considered in the present study, with the physical results being scalable to high temperature systems used in CSP plants.

References

1.
Nault
,
R. M.
,
2005
, “
Basic Research Needs for Solar Energy Utilization
,” Report on the Basic Energy Sciences Workshop on Solar Energy Utilization, Argonne National Laboratory, Argonne, France, April 18–21.
2.
Stekli
,
J.
,
Irwin
,
L.
, and
Pitchumani
,
R.
,
2013
, “
Technical Challenges and Opportunities for Concentrating Solar Power with Energy Storage
,”
ASME J. Thermal Sci. Eng. Appl.
,
5
(
2
), p.
021011
.10.1115/1.4024143
3.
Horbaniuc
,
B.
,
Dumitrascu
,
C.
, and
Popescu
,
A.
,
1999
, “
Mathematical Model for the Study of Solidification Within a Longitudinally Finned Heat Pipe Latent Heat Thermal Storage System
,”
Energy Convers. Manage.
,
40
, pp.
1765
1774
.10.1016/S0196-8904(99)00069-2
4.
Trp
,
A.
,
2005
, “
An Experimental and Numerical Investigation of Heat Transfer During Technical Grade Paraffin Melting and Solidification in a Shell-and-Tube Latent Thermal Energy Storage Unit
,”
Sol. Energy
,
79
, pp.
648
660
.10.1016/j.solener.2005.03.006
5.
Jegadheeswaran
,
S.
, and
Pohekar
,
S. D.
,
2009
, “
Performance Enhancement in Latent Heat Thermal Storage System: A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
9
), pp.
2225
2244
.10.1016/j.rser.2009.06.024
6.
Farid
,
M. M.
, and
Kong
,
W. J.
,
2001
, “
Underfloor Heating With Latent Heat Storage
,”
Proc. Inst. Mech. Eng.
,
215
, pp.
601
609
.10.1243/0957650011538839
7.
Yamada
,
M.
,
Fukusako
,
S.
, and
Kawanami
,
T.
,
2002
, “
Performance Analysis on the Liquid-Ice Thermal Storage System for Optimum Operation
,”
Int. J. Refrigeration
,
25
, pp.
267
277
.10.1016/S0140-7007(01)00088-3
8.
Tardy
,
S.
, and
Sami
,
S. M.
,
2009
, “
Thermal Analysis of Heat Pipes During Thermal Storage
,”
Appl. Therm. Eng.
,
29
, pp.
329
333
.10.1016/j.applthermaleng.2008.02.037
9.
Shabgard
,
H.
,
Bergman
,
L.
,
Sharifi
,
N.
, and
Faghri
,
A.
,
2010
, “
High Temperature Latent Heat Thermal Energy Storage Using Heat Pipes
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2979
2988
.10.1016/j.ijheatmasstransfer.2010.03.035
10.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2011
, “
Analysis and Optimization of a Latent Thermal Energy Storage System With Embedded Heat Pipes
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4596
4610
.10.1016/j.ijheatmasstransfer.2011.06.018
11.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2013
, “
Computational Studies on a Latent Thermal Energy Storage System With Integral Heat Pipes for Concentrating Solar Power
,”
Appl. Energy
,
103
, pp.
400
415
.10.1016/j.apenergy.2012.09.056
12.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2010
, “
Computational Modeling of a Latent Thermal Energy Storage System With Embedded Heat Pipes
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Vancouver, British Columbia, Canada
, November 12–18,
ASME
Paper No. IMECE2010-38682, pp.
369
376
.10.1115/IMECE2010-38682
13.
Assis
,
E.
,
Katsman
,
L.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2007
, “
Numerical and Experimental Study of Melting in a Spherical Shell
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1790
1804
.10.1016/j.ijheatmasstransfer.2006.10.007
14.
Zuo
,
Z. J.
, and
Faghri
,
A.
,
1998
, “
A Network Thermodynamic Analysis of the Heat Pipe
,”
Int. J. Heat Mass Transfer
,
41
, pp.
1473
1484
.10.1016/S0017-9310(97)00220-2
15.
Cao
,
Y.
, and
Faghri
,
A.
,
1990
, “
A Transient Two-Dimensional Compressible Analysis for High Temperature Heat Pipes With Pulsed Heat Input
,”
Numer. Heat Transfer
,
18
(
4
), pp.
483
502
.10.1080/10407789008944804
16.
Voller
,
V. R.
,
Cross
,
M.
, and
Markatos
,
N. C.
,
1987
, “
An Enthalpy Method for Convection/Diffusion Phase Change
,”
Int. J. Numer. Methods Eng.
,
24
, pp.
271
284
.10.1002/nme.1620240119
17.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
,
13
, pp.
297
318
.
18.
“Phase Change Material–RT,” 2013, Rubitherm GmbH, Berlin, accessed February 2013, www.rubitherm.com/english/pages/02a_latent_heat_pcms.htm
19.
“Paratherm HR™ Synthetic Aromatic Heat Transfer Fluid,” Paratherm Corporation, West Conshohocken, PA, accessed February 2013, http://www.paratherm.com/heat-transfer-fluids/high-temperature-heat-transfer-fluids/paratherm-hr/
20.
Price
,
H.
,
Lüpfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Solar Energy Eng.
,
124
, pp.
109
125
.10.1115/1.1467922
21.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
22.
Jones
,
B.
,
Sun
,
D.
,
Krishnan
,
S.
, and
Garimella
,
S. V.
,
2006
, “
Experimental and Numerical Investigation of Melting in a Cylinder
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2724
2738
.10.1016/j.ijheatmasstransfer.2006.01.006
You do not currently have access to this content.