A solar-driven thermochemical pilot plant for the high-temperature thermal dissociation of ZnO has been designed, fabricated, and experimentally demonstrated. Tests were conducted at the large-scale solar concentrating facility of PROMES-CNRS by subjecting the solar reactor to concentrated radiative fluxes of up to 4477 suns and peak solar radiative power input of 140 kWth. The solar reactor was operated at temperatures up to 1936 K, yielding a Zn molar fraction of the condensed products in the range 12–49% that was largely dependent on the flow rate of Ar injected to quench the evolving gaseous products.
Issue Section:
Research Papers
References
1.
Steinfeld
, A.
, 2005
, “Solar Thermochemical Production of Hydrogen—A Review
,” Sol. Energy
, 78
(5
), pp. 603
–615
.10.1016/j.solener.2003.12.0122.
Smestad
, G. P.
, and Steinfeld
, A.
, 2012
, “Review: Photochemical and Thermochemical Production of Solar Fuels From H2O and CO2 Using Metal Oxide Catalysts
,” Ind. Eng. Chem. Res
, 51
(37
), pp. 11828
–11840
.10.1021/ie30079623.
Abanades
, S.
, Charvin
, P.
, Flamant
, G.
, and Neveu
, P.
, 2006
, “Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,” Energy
, 31
(14
), pp. 2805
–2822
.10.1016/j.energy.2005.11.0024.
Wurzbacher
, J. A.
, Gebald
, C.
, and Steinfeld
, A.
, 2011
, “Separation of CO2 From Air by Temperature-Vacuum Swing Adsorption Using Diamine-Functionalized Silica Gel
,” Energy Environ. Sci.
, 4
(9
), pp. 3584
–3592
.10.1039/c1ee01681d5.
Chueh
, W. C.
, Falter
, C.
, Abbott
, M.
, Scipio
, D.
, Furler
, P.
, Haile
, S. M.
, and Steinfeld
, A.
, 2010
, “High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,” Science
, 330
(6012
), pp. 1797
–1801
.10.1126/science.11978346.
Muhich
, C. L.
, Evanko
, B. W.
, Weston
, K. C.
, Lichty
, P.
, Liang
, X.
, Martinek
, J.
, Musgrave
, C. B.
, and Weimer
, A. W.
, 2013
, “Efficient Generation of H2 by Splitting Water With an Isothermal Redox Cycle
,” Science
, 341
(6145
), pp. 540
–542
.10.1126/science.12394547.
McDaniel
, A. H.
, Miller
, E. C.
, Arifin
, D.
, Ambrosini
, A.
, Coker
, E. N.
, O'Hayre
, R.
, Chueh
, W. C.
, and Tong
, J.
, 2013
, “Sr- and Mn-Doped LaAlO3-δ for Solar Thermochemical H2 and CO Production
,” Energy Environ. Sci.
, 6
(8
), pp. 2424
–2428
.10.1039/c3ee41372a8.
Neises-von Puttkamer
, M.
, Simon
, H.
, Schmücker
, M.
, Roeb
, M.
, Sattler
, C.
, and Pitz-Paal
, R.
, 2013
, “Material Analysis of Coated Siliconized Silicon Carbide (SiSiC) Honeycomb Structures for Thermochemical Hydrogen Production
,” Materials
, 6
(2
), pp. 421
–436
.10.3390/ma60204219.
Abanades
, S.
, and Villafan-Vidales
, I.
, 2013
, “CO2 Valorisation Based on Fe3O4/FeO Thermochemical Redox Reactions Using Concentrated Solar Energy
,” Int. J. Energy Res.
, 37
(6
), pp. 598
–608
.10.1002/er.195310.
Alonso
, E.
, Hutter
, C.
, Romero
, M.
, Steinfeld
, A.
, and Gonzalez-Aguilar
, J.
, 2013
, “Kinetics of Mn2O3–Mn3O4 and Mn3O4–MnO Redox Reactions Performed Under Concentrated Thermal Radiative Flux
,” Energy Fuels
, 27
, pp. 4884
–4890
.10.1021/ef400892j11.
Gokon
, N.
, Kondo
, K.
, Hatamachi
, T.
, Sato
, M.
, and Kodama
, T.
, 2013
, “Oxygen-Releasing Step of Nickel Ferrite Based on Rietveld Analysis for Thermochemical Two-Step Water-Splitting
,” Int. J. Hydrogen Energy
, 38
(12
), pp. 4935
–4944
.10.1016/j.ijhydene.2013.02.01412.
Steinfeld
, A.
, 2002
, “Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,” Int. J. Hydrogen Energy
, 27
(6
), pp. 611
–619
.10.1016/S0360-3199(01)00177-X13.
Perkins
, C.
, and Weimer
, A. W.
, 2004
, “Likely Near-Term Solar-Thermal Water Splitting Technologies
,” Int. J. Hydrogen Energy
, 29
(15
), pp. 1587
–1599
.10.1016/j.ijhydene.2004.02.01914.
Loutzenhiser
, P. G.
, Meier
, A.
, and Steinfeld
, A.
, 2010
, “Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,” Materials
, 3
(11
), pp. 4922
–4938
.10.3390/ma311492215.
Loutzenhiser
, P. G.
, and Steinfeld
, A.
, 2011
, “Solar Syngas Production From CO2 and H2O in a Two-Step Thermochemical Cycle Via Zn/ZnO Redox Reactions: Thermodynamic Cycle Analysis
,” Int. J. Hydrogen Energy
, 36
(19
), pp. 12141
–12147
.10.1016/j.ijhydene.2011.06.12816.
Schunk
, L.
, and Steinfeld
, A.
, 2009
, “Kinetics of the Thermal Dissociation of ZnO Exposed to Concentrated Solar Irradiation Using a Solar-Driven Thermogravimeter in the 1800-2100 K Range
,” AIChe J.
, 55
(6
), pp. 1497
–1504
.10.1002/aic.1176517.
Perkins
, C.
, Lichty
, P. R.
, and Weimer
, A. W.
, 2008
, “Thermal ZnO Dissociation in a Rapid Aerosol Reactor as Part of a Solar Hydrogen Production Cycle
,” Int. J. Hydrogen Energy
, 33
(2
), pp. 499
–510
.10.1016/j.ijhydene.2007.10.02118.
Schunk
, L. O.
, Lipinski
, W.
, and Steinfeld
, A.
, 2009
, “Ablative Heat Transfer in a Shrinking Packed-Bed of ZnO Undergoing Solar Thermal Dissociation
,” AIChe J.
, 55
(7
), pp. 1659
–1666
.10.1002/aic.1178219.
Abanades
, S.
, Charvin
, P.
, and Flamant
, G.
, 2007
, “Design and Simulation of a Solar Chemical Reactor for the Thermal Reduction of Metal Oxides: Case Study of Zinc Oxide Dissociation
,” Chem. Eng. Sci.
, 62
(22
), pp. 6323
–6333
.10.1016/j.ces.2007.07.04220.
Schunk
, L.
, Haeberling
, P.
, Wepf
, S.
, Wuillemin
, D.
, Meier
, A.
, and Steinfeld
, A.
, 2008
, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,” ASME J. Sol. Energy Eng.
, 130
(2
), p. 021009
.10.1115/1.284057621.
Schunk
, L. O.
, Lipinski
, W.
, and Steinfeld
, A.
, 2009
, “Heat Transfer Model of a Solar Receiver-Reactor for the Thermal Dissociation of ZnO—Experimental Validation at 10 kW and Scale-Up to 1 MW
,” Chem. Eng. J.
, 150
(2–3
), pp. 502
–508
.10.1016/j.cej.2009.03.01222.
Villasmil
, W.
, Meier
, A.
, and Steinfeld
, A.
, “Dynamic Modeling of a Solar Reactor for Zinc Oxide Thermal Dissociation and Experimental Validation Using IR Thermography
,” ASME J. Sol. Energy Eng.
(in press).10.1115/1.402551123.
Kogan
, A.
, and Kogan
, M.
, 2002
, “The Tornado Flow Configuration—An Effective Method for Screening of a Solar Reactor Window
,” ASME J. Sol. Energy Eng.
, 124
(3
), pp. 206
–214
.10.1115/1.148788224.
Bunting
, E. N.
, 1932
, “Phase Equilibria in the System SiO2-ZnO-Al2O3
,” J. Res. Ntnl. Bur. Stand.
, 8
(2
), pp. 279
–287
.10.6028/jres.008.02025.
Gstoehl
, D.
, Brambilla
, A.
, Schunk
, L.
, and Steinfeld
, A.
, 2008
, “A Quenching Apparatus for the Gaseous Products of the Solar Thermal Dissociation of ZnO
,” J. Mater. Sci.
, 43
(14
), pp. 4729
–4736
.10.1007/s10853-007-2351-x26.
Trombe
, F.
, and Vinh
, A.
, 1973
, “Thousand kW Solar Furnace, Built by the National Center of Scientific Research, in Odeillo (France)
,” Sol. Energy
, 15
(1
), pp. 57
–61
.10.1016/0038-092X(73)90006-627.
Mega Watt Solar Furnace (MWSF)
, PROMES-CNRS, accessed May 7, 2013, http://www.promes.cnrs.fr/index.php?page=mega-watt-solar-furnace28.
Gineste
, J. M.
, Flamant
, G.
, and Olalde
, G.
, 1999
, “Incident Solar Radiation Data at Odeillo Solar Furnaces
,” J. Phys. IV
, 9
(PR3
), pp. 623
–628
.29.
Gardon
, R.
, 1960
, “A Transducer for the Measurement of Heat-Flow Rate
,” ASME J. Heat Transfer
, 82
(4
), pp. 396
–398
.10.1115/1.367996830.
Childs
, P. R. N.
, Greenwood
, J. R.
, and Long
, C. A.
, 1999
, “Heat Flux Measurement Techniques
,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
, 213
(7
), pp. 655
–677
.10.1177/09544062992130070231.
Weidenkaff
, A.
, Reller
, A.
, Sibieude
, F.
, Wokaun
, A.
, and Steinfeld
, A.
, 2000
, “Experimental Investigations on the Crystallization of Zinc by Direct Irradiation of Zinc Oxide in a Solar Furnace
,” Chem. Mater.
, 12
(8
), pp. 2175
–2181
.10.1021/cm001029532.
Cullity
, B. D.
, and Stock
, S. R.
, 2001
, Elements of X-Ray Diffraction
, Prentice–Hall
, Englewood Cliffs, NJ
.33.
Stamatiou
, A.
, Steinfeld
, A.
, and Jovanovic
, Z. R.
, 2013
, “On the Effect of the Presence of Solid Diluents During Zn Oxidation by CO2
,” Ind. Eng. Chem. Res.
, 52
(5
), pp. 1859
–1869
.10.1021/ie302643g34.
Alxneit
, I.
, 2008
, “Assessing the Feasibility of Separating a Stoichiometric Mixture of Zinc Vapor and Oxygen by a Fast Quench—Model Calculations
,” Sol. Energy
, 82
(11
), pp. 959
–964
.10.1016/j.solener.2008.05.00935.
Alxneit
, I.
, and Tschudi
, H. R.
, 2013
, “Modeling the Formation and Chemical Composition of Partially Oxidized Zn/ZnO Particles Formed by Rapid Cooling of a Mixture of Zn(g) and O2
,” J. Mater.
, 2013
(2013
), p. 718525
.10.1155/2013/71852536.
Ballestrín
, J.
, Ulmer
, S.
, Morales
, A.
, Barnes
, A.
, Langley
, L. W.
, and Rodríguez
, M.
, 2003
, “Systematic Error in the Measurement of Very High Solar Irradiance
,” Sol. Energy Mater. Sol. Cells
, 80
(3
), pp. 375
–381
.10.1016/j.solmat.2003.08.014Copyright © 2014 by ASME
You do not currently have access to this content.