Abstract

One of the challenges in the design and development of a latent heat storage unit (LHSU) is to increase the charging and discharging rates which are inherently low because of low thermal conductivity of phase change materials (PCM). Out of various heat transfer enhancement techniques, employing annular fins is very simple, efficient and no fabrication complexity is involved. Fin parameters (fin size and number of fins) significantly influence the enhancement in heat transfer rate. Hence, optimization of fin parameters is necessary for the efficient design of an LHSU. While designing an LHSU along with heat transfer rate, entropy generation should also be considered in order to make it exergetically efficient. Therefore, the present study is aimed at multi-objective optimization of annular fin parameters to minimize the melting time and entropy generation. Fin diameter and the number of fins are taken as the variables. The influence of these two variables on the melting time, average Nusselt number, energy stored, and distribution of entropy is presented. The melting rate is increased, and global entropy generation decreased by increasing the number of fins up to 15. An increase in the fin diameter reduced the melting time while entropy generation got increased. For the multi-objective optimization, the multi-objective optimization based on ratio analysis (MOORA) technique is chosen and the optimized values of fin diameter and number of fins are observed to be 80 mm and 15 respectively. Finally, optimized parameters are represented in non-dimensional form to make them applicable for any size of the LHSU.

References

1.
Wei
,
G.
,
Wang
,
G.
,
Xu
,
C.
,
Ju
,
X.
,
Xing
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2018
, “
Selection Principles and Thermophysical Properties of High Temperature Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1771
1786
. 10.1016/j.rser.2017.05.271
2.
Du
,
K.
,
Calautit
,
J.
,
Wang
,
Z.
,
Wu
,
Y.
, and
Liu
,
H.
,
2018
, “
A Review of the Applications of Phase Change Materials in Cooling, Heating and Power Generation in Different Temperature Ranges
,”
Appl. Energy
,
220
, pp.
242
273
. 10.1016/j.apenergy.2018.03.005
3.
Markandeyulu
,
T.
,
Krishna Devanuri
,
J.
, and
Kiran Kumar
,
K.
,
2016
, “
On the Suitability of Phase Change Material (PCM) for Thermal Management of Electronic Components
,”
Indian J. Sci. Technol.
,
9
(
S1
), pp.
1
4
. 10.17485/ijst/2016/v9iS1/107939
4.
Oró
,
E.
,
de Gracia
,
A.
,
Castell
,
A.
,
Farid
,
M. M.
, and
Cabeza
,
L. F.
,
2012
, “
Review on Phase Change Materials (PCMs) for Cold Thermal Energy Storage Applications
,”
Appl. Energy
,
99
, pp.
513
533
. 10.1016/j.apenergy.2012.03.058
5.
Veerakumar
,
C.
, and
Sreekumar
,
A.
,
2016
, “
Phase Change Material Based Cold Thermal Energy Storage : Materials, Techniques and Applications—A Review
,”
Int. J. Refrig.
,
67
, pp.
271
289
. 10.1016/j.ijrefrig.2015.12.005
6.
Kumar
,
S.
,
Das
,
M. K.
, and
Rath
,
P.
,
2016
, “
Application of TCE-PCM Based Heat Sinks for Cooling of Electronic Components : A Review
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
550
582
. 10.1016/j.rser.2015.12.238
7.
Zalba
,
B.
,
Marín
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
. 10.1016/S1359-4311(02)00192-8
8.
Longeon
,
M.
,
Soupart
,
A.
,
Fourmigué
,
J. F.
,
Bruch
,
A.
, and
Marty
,
P.
,
2013
, “
Experimental and Numerical Study of Annular PCM Storage in the Presence of Natural Convection
,”
Appl. Energy
,
112
, pp.
175
184
. 10.1016/j.apenergy.2013.06.007
9.
Uma Maheswararao
,
G.
,
Majumadar
,
A.
,
Niphadkar
,
T.
, and
Jaya Krishna
,
D.
,
2019
, “
An Image Processing Algorithm to Estimate the Melt Fraction and Energy Storage of a PCM Enclosed in a Spherical Capsule
,”
Int. J. Energy Res.
,
43
(
10
), pp.
5535
5547
. 10.1002/er.4668
10.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2019
, “
Parametric Investigation to Assess the Melt Fraction and Melting Time for a Latent Heat Storage Material Based Vertical Shell and Tube Heat Exchanger
,”
Sol. Energy
,
193
, pp.
360
371
. 10.1016/j.solener.2019.09.076
11.
Zivkovic
,
B.
, and
Fujii
,
I.
,
2001
, “
Analysis of Isothermal Phase Change of Phase Change Material Within Rectangular and Cylindrical Containers
,”
Sol. Energy
,
70
(
1
), pp.
51
61
. 10.1016/S0038-092X(00)00112-2
12.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
615
628
. 10.1016/j.rser.2009.10.015
13.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2018
, “
Influence of Operational and Design Parameters on the Performance of a PCM Based Heat Exchanger for Thermal Energy Storage—A Review
,”
J. Energy Storage
,
20
, pp.
497
519
. 10.1016/j.est.2018.10.024
14.
Arunachalam
,
S.
,
2019
, “
Latent Heat Storage: Container Geometry, Enhancement Techniques, and Applications-A Review
,”
ASME J. Sol. Energy Eng.
,
141
(
5
). 10.1115/1.4043126
15.
Wang
,
W. W.
,
Wang
,
L. B.
, and
He
,
Y. L.
,
2016
, “
Parameter Effect of a Phase Change Thermal Energy Storage Unit with one Shell and one Finned Tube on its Energy Efficiency Ratio and Heat Storage Rate
,”
Appl. Therm. Eng.
,
93
, pp.
50
60
. 10.1016/j.applthermaleng.2015.08.108
16.
Pizzolato
,
A.
,
Sharma
,
A.
,
Maute
,
K.
,
Sciacovelli
,
A.
, and
Verda
,
V.
,
2017
, “
Design of Effective Fins for Fast PCM Melting and Solidification in Shell-and-Tube Latent Heat Thermal Energy Storage Through Topology Optimization
,”
Appl. Energy
,
208
, pp.
210
227
. 10.1016/j.apenergy.2017.10.050
17.
Yang
,
J.
,
Yang
,
L.
,
Xu
,
C.
, and
Du
,
X.
,
2015
, “
Numerical Analysis on Thermal Behaviour of Solid-Liquid Phase Change Within Copper Foam with Varying Porosity
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1008
1018
. 10.1016/j.ijheatmasstransfer.2015.01.088
18.
Xu
,
Y.
,
Ren
,
Q.
,
Zheng
,
Z. J.
, and
He
,
Y. L.
,
2017
, “
Evaluation and Optimization of Melting Performance for a Latent Heat Thermal Energy Storage Unit Partially Filled with Porous Media
,”
Appl. Energy
,
193
, pp.
84
95
. 10.1016/j.apenergy.2017.02.019
19.
Abdulateef
,
A. M.
,
Mat
,
S.
,
Abdulateef
,
J.
,
Sopian
,
K.
, and
Al-Abidi
,
A. A.
,
2018
, “
Geometric and Design Parameters of Fins Employed for Enhancing Thermal Energy Storage Systems: a Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1620
1635
. 10.1016/j.rser.2017.07.009
20.
Yang
,
X.
,
Lu
,
Z.
,
Bai
,
Q.
,
Zhang
,
Q.
,
Jin
,
L.
, and
Yan
,
J.
,
2017
, “
Thermal Performance of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit: Role of Annular Fins
,”
Appl. Energy
,
202
, pp.
558
570
. 10.1016/j.apenergy.2017.05.007
21.
Choi
,
J. C.
, and
Kim
,
S. D.
,
1992
, “
Heat-transfer Characteristics of a Latent Heat Storage System Using MgCl2· 6H2O
,”
Energy
,
17
(
12
), pp.
1153
1164
. 10.1016/0360-5442(92)90004-J
22.
Lacroix
,
M.
,
1993
, “
Study of the Heat Transfer Behavior of a Latent Heat Thermal Energy Storage Unit with a Finned Tube
,”
Int. J. Heat Mass Transfer
,
36
(
8
), pp.
2083
2092
. 10.1016/S0017-9310(05)80139-5
23.
Seeniraj
,
R. V.
,
Velraj
,
R.
, and
Narasimhan
,
N. L.
,
2002
, “
Thermal Analysis of a Finned-Tube LHTS Module for a Solar Dynamic Power System
,”
Heat and Mass Transfer
,
38
(
4–5
), pp.
409
417
. 10.1007/s002310100268
24.
Erek
,
A.
,
Ilken
,
Z.
, and
Acar
,
M. A.
,
2005
, “
Experimental and Numerical Investigation of Thermal Energy Storage with a Finned Tube
,”
International J. Energy Res.
,
29
(
4
), pp.
283
301
. 10.1002/er.1057
25.
Ismail
,
K. A. R.
, and
Lino
,
F. A. M.
,
2011
, “
Fins and Turbulence Promoters for Heat Transfer Enhancement in Latent Heat Storage Systems
,”
Exp. Therm. Fluid. Sci.
,
35
(
6
), pp.
1010
1018
. 10.1016/j.expthermflusci.2011.02.002
26.
Jmal
,
I.
, and
Baccar
,
M.
,
2015
, “
Numerical Study of PCM Solidification in a Finned Tube Thermal Storage Including Natural Convection
,”
Appl. Therm. Eng.
,
84
, pp.
320
330
. 10.1016/j.applthermaleng.2015.03.065
27.
Zhai
,
X. Q.
,
Cheng
,
X. W.
,
Wang
,
C.
, and
Wang
,
R. Z.
,
2015
, “
Experimental Investigation and Performance Analysis of a fin Tube Phase Change Cold Storage Unit for High Temperature Cooling Application
,”
Energy Buildin.
,
89
, pp.
9
17
. 10.1016/j.enbuild.2014.12.021
28.
Zhao
,
D.
, and
Tan
,
G.
,
2015
, “
Numerical Analysis of a Shell-and-Tube Latent Heat Storage Unit with Fins for air-Conditioning Application
,”
Appl. Energy
,
138
, pp.
381
392
. 10.1016/j.apenergy.2014.10.051
29.
Hosseini
,
M. J.
,
Rahimi
,
M.
, and
Bahrampoury
,
R.
,
2015
, “
Thermal Analysis of PCM Containing Heat Exchanger Enhanced with Normal Annular Fines
,”
Mech. Sci.
,
6
(
2
), pp.
221
234
. 10.5194/ms-6-221-2015
30.
Mostafavi
,
A.
,
Parhizi
,
M.
, and
Jain
,
A.
,
2019
, “
International Journal of Heat and Mass Transfer Theoretical Modeling and Optimization of fin-Based Enhancement of Heat Transfer Into a Phase Change Material
,”
Int. J. Heat Mass Transfer
,
145
, p.
118698
. 10.1016/j.ijheatmasstransfer.2019.118698
31.
Lim
,
J.
,
Bejan
,
A.
, and
Kim
,
J.
,
1992
, “
Thermodynamic Optimization of Phase-Change Energy-Storage Using 2 or More Materials
,”
ASME J. Energy Resour. Technol.
,
114
(
1
), pp.
84
90
. 10.1115/1.2905925
32.
Kamil Kaygusuz
,
A. S.
,
2002
, “
Energy and Exergy Calculations of Latent Heat Energy Storage Systems
,”
Energy Sources
,
22
(
2
), pp.
117
126
. 10.1080/00908310050014090
33.
Öztürk
,
H. H.
,
2005
, “
Experimental Evaluation of Energy and Exergy Efficiency of a Seasonal Latent Heat Storage System for Greenhouse Heating
,”
Energy Convers. Manage.
,
46
(
9–10
), pp.
1523
1542
. 10.1016/j.enconman.2004.07.001
34.
Erek
,
A.
, and
Dincer
,
I.
,
2009
, “
A new Approach to Energy and Exergy Analyses of Latent Heat Storage Unit
,”
Heat Transfer Eng.
,
30
(
6
), pp.
506
515
. 10.1080/01457630802529271
35.
Mahfuz
,
M. H.
,
Anisur
,
M. R.
,
Kibria
,
M. A.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2014
, “
Performance Investigation of Thermal Energy Storage System with Phase Change Material (PCM) for Solar Water Heating Application
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
132
139
. 10.1016/j.icheatmasstransfer.2014.07.022
36.
Rezaei
,
M.
,
Anisur
,
M. R.
,
Mahfuz
,
M. H.
,
Kibria
,
M. A.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2013
, “
Performance and Cost Analysis of Phase Change Materials with Different Melting Temperatures in Heating Systems
,”
Energy
,
53
, pp.
173
178
. 10.1016/j.energy.2013.02.031
37.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2020
, “
Energy and Exergy Analyses of Latent Heat Storage Unit Positioned at Different Orientations—An Experimental Study
,”
Energy
,
194
, p.
116924
. 10.1016/j.energy.2020.116924
38.
Jegadheeswaran
,
S.
,
Pohekar
,
S. D.
, and
Kousksou
,
T.
,
2010
, “
Exergy Based Performance Evaluation of Latent Heat Thermal Storage System: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2580
2595
. 10.1016/j.rser.2010.07.051
39.
Bejan
,
A.
,
1996
,
“Entropy Generation Minimization”
,
CRC Press
,
London (England)
.
40.
Guelpa
,
E.
,
Sciacovelli
,
A.
, and
Verda
,
V.
,
2013
, “
Entropy Generation Analysis for the Design Improvement of a Latent Heat Storage System
,”
Energy
,
53
, pp.
128
138
. 10.1016/j.energy.2013.02.017
41.
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2015
, “
Entropy Generation Assessment of Shell and Tube Latent Heat Storage Unit
,”
Int. J. Exergy
,
16
(
1
), pp.
97
108
. 10.1504/IJEX.2015.067301
42.
Li
,
G.
,
2015
, “
Energy and Exergy Performance Assessments for Latent Heat Thermal Energy Storage Systems
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
926
954
. 10.1016/j.rser.2015.06.052
43.
Jaya Krishna
,
D.
, and
Kochar
,
S.
,
2017
, “
The Metallographic Study of Corrosion of Metals with Latent Heat Storage Materials Suitable for Solar hot Water System
,”
Trans. Indian Ceram. Soc.
,
76
(
2
), pp.
133
141
. 10.1080/0371750X.2016.1268072
44.
Gaddala
,
U. M.
, and
Devanuri
,
J. K.
,
2020
, “
A Hybrid Decision-Making Method for the Selection of a PCM for Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041020
. 10.1115/1.4046056
45.
Kumar
,
M.
, and
Krishna
,
D. J.
,
2017
, “
Influence of Mushy Zone Constant on Thermohydraulics of a PCM
,”
Energy Procedia
,
109
, pp.
314
321
. 10.1016/j.egypro.2017.03.074
46.
Gharebaghi
,
M.
, and
Sezai
,
I.
,
2008
, “
Enhancement of Heat Transfer in Latent Heat Storage Modules with Internal Fins
,”
Numer. Heat Transfer, Part A
,
53
(
7
), pp.
749
765
. 10.1080/10407780701715786
47.
Khanna
,
S.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2018
, “
Optimization of Finned Solar Photovoltaic Phase Change Material (Finned pv pcm) System
,”
Int. J. Therm. Sci.
,
130
, pp.
313
322
. 10.1016/j.ijthermalsci.2018.04.033
48.
Joshi
,
V.
, and
Rathod
,
M. K.
,
2019
, “
Constructal Enhancement of Thermal Transport in Metal Foam-PCM Composite-Assisted Latent Heat Thermal Energy Storage System
,”
Numer. Heat Transfer, Part A
,
75
(
6
), pp.
413
433
. 10.1080/10407782.2019.1599270
49.
Yang
,
X. H.
,
Tan
,
S. C.
, and
Liu
,
J.
,
2016
, “
Numerical Investigation of the Phase Change Process of low Melting Point Metal
,”
Int. J. Heat Mass Transfer
,
100
, pp.
899
907
. 10.1016/j.ijheatmasstransfer.2016.04.109
50.
Chakraborty
,
S.
,
2011
, “
Applications of the MOORA Method for Decision Making in Manufacturing Environment
,”
Int. J. Adv. Des. Manuf. Technol.
,
54
(
9–12
), pp.
1155
1166
. 10.1007/s00170-010-2972-0
51.
Brauers
,
W. K.
,
2004
,
Optimization Methods for a Stakeholder Society : a Revolution in Economic Thinking by Multi-Objective Optimization
,
Kluwer Academic Publishers
,
Boston/Dordrecht/London
.
52.
Brauers
,
W. K. M.
,
Zavadskas
,
E. K.
,
Peldschus
,
F.
, and
Turskis
,
Z.
,
2008
, “
Multi-objective Decision-Making for Road Design
,”
Transport
,
23
(
3
), pp.
183
193
. 10.3846/1648-4142.2008.23.183-193
You do not currently have access to this content.