Abstract

Understanding how energy use responds to meteorological conditions is essential for anticipation of energy demands, which is of significance to maintain sufficient power supply and to prevent brownouts or blackouts during peak hours. Using the quarter-hourly and district-level electricity data for Beijing, this study calculates the district-varying cooling electric loads due to air-conditioning (AC) systems in five consecutive summers. Results show the occurrence of two major features that are common for summertime cooling loads in most districts, namely, double-peaked diurnal profiles and weekday–weekend fluctuations. With the increasing distance from the city core, the evening peak cooling load around 21:00 local time (LT) becomes more pronounced and comparable with its afternoon counterpart around 15:00 LT. Conversely, the weekday–weekend fluctuation is greatly weakened in suburban and rural districts due to the stable cooling demands on weekdays and weekends. The district-level sensitivity of peak cooling loads to surface meteorological factors is further investigated by linear regression analysis, and results show significant decreases from urban to rural districts. The correlation coefficients between peak cooling loads and heat index that combines air temperature and relative humidity reach up to 0.8–0.9 in most districts. If using air temperature or specific humidity solely, the coefficients of determination with peak cooling loads are roughly 0.1–0.3 smaller, possibly indicating the greater potential of heat index for effectively predicting peak cooling demands in Beijing.

References

1.
Güneralp
,
B.
,
Zhou
,
Y.
,
Ürge-Vorsatz
,
D.
,
Gupta
,
M.
,
Yu
,
S.
,
Patel
,
P. L.
,
Fragkias
,
M.
,
Li
,
X.
, and
Seto
,
K. C.
,
2017
, “
Global Scenarios of Urban Density and Its Impacts on Building Energy Use Through 2050
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
34
), pp.
8945
8950
. 10.1073/pnas.1606035114
2.
United Nations
,
2015
,
World Urbanization Prospects: the 2014 Revision
,
United Nations Department of Economics and Social Affairs, Population Division: New York, NY, USA
, https://www.un.org/en/development/desa/publications/2014-revision-world-urbanization-prospects.html
3.
United Nations Environmental Program
,
2009
,
Buildings and Climate Change: Summary for Decision-Makers
,
United Nations Environmental Program
, https://europa.eu/capacity4dev/unep/documents/buildings-and-climate-change-summary-decision-makers
4.
City of New York
,
2010
,
Inventory of New York City Greenhouse Emissions, September 2010, by Jonathan Dickinson and Rishi Desai
,
Mayor's Office of Long-Term Planning and Sustainability, New York
, http://www.nyc.gov/html/planyc/downloads/pdf/publications/greenhousegas_2010.pdf
5.
Nishida
,
Y.
,
2013
,
Energy Efficiency in Buildings: Policy and Programs in Tokyo
,
Tokyo Metropolitan Government-Environment
, https://www.eu-japan.eu/sites/eu-japan.eu/files/Nishida.pdf
6.
IPCC. Climate Change 2013: The Physical Science Basis
,
2013
,
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
Cambridge, UK
.
7.
Tebaldi
,
C.
,
Hayhoe
,
K.
,
Arblaster
,
J.
, and
Meehl
,
J.
,
2006
, “
Going to the Extremes: An Inter-Comparison of Model-Simulated Historical and Future Changes in Extreme Events
,”
Clim. Change
,
79
(
3–4
), pp.
185
211
. 10.1007/s10584-006-9051-4
8.
Ortiz
,
L.
,
González
,
J. E.
,
Gutiérrez
,
E.
, and
Arend
,
M.
,
2017
, “
Forecasting Building Energy Demands With a Coupled Weather-Building Energy Model in a Dense Urban Environment
,”
ASME J. Sol. Energy Eng.
,
139
(
1
), p.
011002
. 10.1115/1.4034909
9.
Ortiz
,
L.
,
González
,
J. E.
, and
Lin
,
W.
,
2018
, “
Climate Change Impacts on Peak Building Cooling Energy Demand in a Coastal Megacity
,”
Environ. Res. Lett.
,
13
(
9
), p.
094008
. 10.1088/1748-9326/aad8d0
10.
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Moustaoui
,
M.
,
Wang
,
M.
, and
Svoma
,
B. M.
,
2013
, “
Assessing Summertime Urban Air Conditioning Consumption in a Semiarid Environment
,”
Environ. Res. Lett.
,
8
(
3
), p.
034022
. 10.1088/1748-9326/8/3/034022
11.
Li
,
C.
,
Zhou
,
J.
,
Cao
,
Y.
,
Zhong
,
J.
,
Liu
,
Y.
,
Kang
,
C.
, and
Tan
,
Y.
,
2014
, “
Interaction Between Urban Microclimate and Electric Air-Conditioning Energy Consumption During High Temperature Season
,”
Appl. Energy
,
117
, pp.
149
156
. 10.1016/j.apenergy.2013.11.057
12.
Lam
,
J. C.
,
Wan
,
K. K. W.
,
Cheung
,
K. L.
, and
Liu
,
Y.
,
2008
, “
Principle Component Analysis of Electricity Use in Office Buildings
,”
Energy Build.
,
40
(
5
), pp.
828
836
. 10.1016/j.enbuild.2007.06.001
13.
Lam
,
J. C.
,
Tang
,
H. L.
, and
Li
,
D. H.
,
2008
, “
Seasonal Variations in Residential and Commercial Sector Electricity Consumption in Hong Kong
,”
Energy
,
33
(
3
), pp.
513
523
. 10.1016/j.energy.2007.10.002
14.
Ihara
,
T.
,
Genchi
,
Y.
,
Sato
,
T.
,
Yamaguchi
,
K.
, and
Endo
,
Y.
,
2008
, “
City-block-scale Sensitivity of Electricity Consumption to Air Temperature and Air Humidity in Business Districts of Tokyo, Japan
,”
Energy
,
33
(
11
), pp.
1634
1645
. 10.1016/j.energy.2008.06.005
15.
Valor
,
E.
,
Meneu
,
V.
, and
Caselles
,
V.
,
2001
, “
Daily Air Temperature and Electricity Load in Spain
,”
J. Appl. Meteorol.
,
40
(
8
), pp.
1413
1421
. 10.1175/1520-0450(2001)040<1413:DATAEL>2.0.CO;2
16.
Psiloglou
,
B. E.
,
Giannakopoulos
,
C.
,
Majithia
,
S.
, and
Petrakis
,
M.
,
2009
, “
Factors Affecting Electricity Demand in Athens, Greece and London, UK: A Comparative Assessment
,”
Energy
,
34
(
11
), pp.
1855
1863
. 10.1016/j.energy.2009.07.033
17.
Wang
,
Y.
, and
Bielicki
,
J. M.
,
2018
, “
Acclimation and the Response of Hourly Electricity Loads to Meteorological Variables
,”
Energy
,
142
(
1
), pp.
473
485
. 10.1016/j.energy.2017.10.037
18.
Apadula
,
F.
,
Bassini
,
A.
,
Elli
,
A.
, and
Scapin
,
S.
,
2012
, “
Relationships Between Meteorological Variables and Monthly Electricity Demand
,”
Appl. Energy
,
98
, pp.
346
356
. 10.1016/j.apenergy.2012.03.053
19.
Jovanović
,
S.
,
Savić
,
S.
,
Bojić
,
M.
,
Djordjević
,
Z.
, and
Nikolić
,
D.
,
2015
, “
The Impact of the Mean Daily Air Temperature Change on Electricity Consumption
,”
Energy
,
88
, pp.
604
609
. 10.1016/j.energy.2015.06.001
20.
Thornton
,
H. E.
,
Hoskins
,
B. J.
, and
Scaife
,
A. A.
,
2016
, “
The Role of Temperature in the Variability and Extremes of Electricity and Gas Demand in Great Britain
,”
Environ. Res. Lett.
,
11
(
11
), p.
114015
. 10.1088/1748-9326/11/11/114015
21.
Xu
,
X.
,
Chen
,
F.
,
Shen
,
S.
,
Miao
,
S.
,
Barlage
,
M.
,
Guo
,
W.
, and
Mahalov
,
A.
,
2018
, “
Using WRF-Urban to Assess Summertime Air Conditioning Electric Loads and Their Impacts on Urban Weather in Beijing
,”
J. Geophys. Res.: Atmos.
,
123
(
5
), pp.
2475
2490
. 10.1002/2017JD028168
22.
Xu
,
X.
,
González
,
J. E.
,
Shen
,
S.
,
Miao
,
S.
, and
Dou
,
J.
,
2018
, “
Impacts of Urbanization and Air Pollution on Building Energy Demands—Beijing Case Study
,”
Appl. Energy
,
225
, pp.
98
109
. 10.1016/j.apenergy.2018.04.120
23.
Barlage
,
M.
,
Miao
,
S.
, and
Chen
,
F.
,
2016
, “
Impact of Physics Parameterizations on High-Resolution Weather Prediction Over Two Chinese Megacities
,”
J. Geophys. Res.: Atmos.
,
121
(
9
), pp.
4487
4498
. 10.1002/2015JD024450
24.
Dou
,
J.
,
Wang
,
Y.
,
Bornstein
,
R.
, and
Miao
,
S.
,
2015
, “
Observed Spatial Characteristics of Beijing Urban Climate Impacts on Summer Thunderstorms
,”
J. Appl. Meteorol. Clim.
,
54
(
1
), pp.
94
105
. 10.1175/JAMC-D-13-0355.1
25.
Anderson
,
G. B.
,
Bell
,
M. L.
, and
Peng
,
R. D.
,
2013
, “
Methods to Calculate the Heat Index as an Exposure Metric in Environmental Health Research
,”
Environ. Health Perspect.
,
121
(
10
), pp.
1111
1119
. 10.1289/ehp.1206273
26.
Kikegawa
,
Y.
,
Tanaka
,
A.
,
Ohashi
,
Y.
,
Ihara
,
T.
, and
Shigeta
,
Y.
,
2014
, “
Observed and Simulated Sensitivities of Summertime Urban Surface Air Temperatures to Anthropogenic Heat in Downtown Areas of Two Japanese Major Cities, Tokyo and Osaka
,”
Theor. Appl. Climatol.
,
117
(
1–2
), pp.
175
193
. 10.1007/s00704-013-0996-8
27.
Ohashi
,
Y.
,
Suido
,
M.
,
Kikegawa
,
Y.
,
Ihara
,
T.
,
Shigeta
,
Y.
, and
Nabeshima
,
M.
,
2016
, “
Impact of Seasonal Variations in Weekday Electricity Use on Urban Air Temperature Observed in Osaka, Japan
,”
Q. J. R. Metereol. Soc.
,
142
(
695
), pp.
971
982
. 10.1002/qj.2698
28.
Ohashi
,
Y.
,
Genchi
,
Y.
,
Kondo
,
H.
,
Kikegawa
,
Y.
,
Yoshikado
,
H.
, and
Hirano
,
Y.
,
2007
, “
Influence of Air-Conditioning Waste Heat on Air Temperature in Tokyo During Summer: Numerical Experiments Using an Urban Canopy Model Coupled With a Building Energy Model
,”
J. Appl. Meteorol. Clim.
,
46
(
1
), pp.
66
81
. 10.1175/JAM2441.1
29.
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
, and
Moustaoui
,
M.
,
2015
, “
Summertime Response of Temperature and Cooling Energy Demand to Urban Expansion in a Semiarid Environment
,”
J. Appl. Meteorol.
,
54
(
8
), pp.
1756
1772
. 10.1175/JAMC-D-14-0313.1
30.
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Moustaoui
,
M.
, and
Wang
,
M.
,
2014
, “
Anthropogenic Heating of the Urban Environment Due to Air Conditioning
,”
J. Geophys. Res.: Atmos.
,
119
(
10
), pp.
5949
5965
. 10.1002/2013JD021225
You do not currently have access to this content.