Abstract

The application of liquid lithium as a coolant for the forthcoming era of space nuclear reactors exhibits significant potential, and spiral tube heat exchanger components are commonly used in steam generators for reactors. However, the heat transfer characteristics of liquid lithium in spiral tubes are not yet fully understood. This research establishes a non-isothermal heat transfer model incorporating a modified turbulent Prandtl number to analyze the flow of liquid lithium through spiral tubes with varying geometries. Numerical analysis is carried out focusing on the influence of inlet velocity, the distribution of related parameters, and the geometry of spiral tubes. The results demonstrate that in the range of the dimensionless Dean number 8165–13,063, the Nusselt number and the pressure drop present approximately linear relations with the Dean number. For the distribution law of relevant physical quantities, the inner side of the tube displays an eye-anatomy low-flowrate area and a high-temperature area, while a low-pressure area forms on the inner pipe wall. Finally, the pitch and spiral radius are found to be reduced as much as possible to ensure high liquid lithium-based heat transfer performance with a small pressure drop. The optimized design parameters reveal that within the actual design range of non-dimensional pitch of 0.667–10.667 and curvature of 0.0556–0.1667, the non-dimensional pitch and curvature are 0.667–2.667 and 0.1667, respectively. This study offers valuable insights into the heat transfer properties of liquid lithium within heat exchangers of the spiral tube design, promoting its application in space nuclear reactor power supply.

References

1.
Wu
,
Y.
,
Bai
,
Y.
,
Song
,
Y.
,
Huang
,
Q.
,
Zhao
,
Z.
, and
Hu
,
L.
,
2016
, “
Development Strategy and Conceptual Design of China Lead-Based Research Reactor
,”
Ann. Nucl. Energy
,
87
, pp.
511
516
.
2.
Wong
,
C. P. C.
,
Salavy
,
J. F.
,
Kim
,
Y.
,
Kirillov
,
I.
,
Rajendra Kumar
,
E.
,
Morley
,
N. B.
,
Tanaka
,
S.
, and
Wu
,
Y. C.
,
2008
, “
Overview of Liquid Metal TBM Concepts and Programs
,”
Fusion Eng. Des.
,
83
(
7–9
), pp.
850
857
.
3.
Ma
,
W.
,
Karbojian
,
A.
,
Hollands
,
T.
, and
Koch
,
M. K.
,
2011
, “
Experimental and Numerical Study on Lead-Bismuth Heat Transfer in a Fuel Rod Simulator
,”
J. Nucl. Mater.
,
415
(
3
), pp.
415
424
.
4.
Fisher
,
A. E.
,
Kolemen
,
E.
, and
Hvasta
,
M. G.
,
2018
, “
Experimental Demonstration of Hydraulic Jump Control in Liquid Metal Channel Flow Using Lorentz Force
,”
Phys. Fluids
,
30
(
6
), p.
067104
.
5.
Kirillov
,
I. R.
,
2000
, “
Lithium Cooled Blanket of RF DEMO Reactor
,”
Fusion Eng. Des.
,
49–50
, pp.
457
465
.
6.
Li
,
C.
,
Wang
,
C.
,
Wei
,
Y.
, and
Lin
,
Y.
,
2019
, “
China’s Present and Future Lunar Exploration Program
,”
Science
,
365
(
6450
), pp.
238
239
.
7.
Ahn
,
Y.
, and
Lee
,
J. I.
,
2014
, “
Study of Various Brayton Cycle Designs for Small Modular Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
276
, pp.
128
141
.
8.
Kim
,
S.-O.
,
Yoonsub
,
S.
,
Kim
,
E.
,
Wi
,
M.-H.
, and
Han
,
D.
,
2003
, “
Evaluation of New Design Concepts for Steam Generators in Sodium Cooled Liquid Metal Reactors
,”
J. Korean Nucl. Soc.
,
35
(
2
), pp.
121
132
.
9.
Sim
,
Y. S.
,
Kim
,
E. K.
, and
Kim
,
S. O.
,
2006
, “
A New LMR Steam Generator Free from SWR With a Double Tube Bundle Configuration
,”
Nucl. Eng. Des.
,
236
(
14–16
), pp.
1471
1480
.
10.
Pradeep Mohan Kumar
,
K.
,
Vijayan
,
V.
,
Suresh Kumar
,
B.
,
Vivek
,
C. M.
, and
Dinesh
,
S.
,
2018
, “
Computational Analysis and Optimization of Spiral Plate Heat Exchanger
,”
J. Appl. Fluid Mech.
,
11
(
Special Issue
), pp.
121
128
.
11.
Kumar
,
V.
,
Saini
,
S.
,
Sharma
,
M.
, and
Nigam
,
K. D. P.
,
2006
, “
Pressure Drop and Heat Transfer Study in Tube-in-Tube Helical Heat Exchanger
,”
Chem. Eng. Sci.
,
61
(
13
), pp.
4403
4416
.
12.
Dang
,
C.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide. Part 1. Experimental Measurement
,”
Int. J. Refrig.
,
27
(
7
), pp.
736
747
.
13.
Jayakumar
,
J. S.
,
Mahajani
,
S. M.
,
Mandal
,
J. C.
,
Iyer
,
K. N.
, and
Vijayan
,
P. K.
,
2009
, “
Chemical Engineering Research and Design Thermal Hydraulic Characteristics of Air–Water Two-Phase Flows in Helical Pipes
,”
Chem. Eng. Res. Des.
,
88
(
4
), pp.
501
512
.
14.
Akbarinia
,
A.
,
2008
, “
Impacts of Nanofluid Flow on Skin Friction Factor and Nusselt Number in Curved Tubes With Constant Mass Flow
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
229
241
.
15.
Zhao
,
H.
,
Li
,
X.
, and
Wu
,
X.
,
2017
, “
Numerical Investigation of Supercritical Water Turbulent Flow and Heat Transfer Characteristics in Vertical Helical Tubes
,”
J. Supercrit. Fluids
,
127
(
March
), pp.
48
61
.
16.
Xu
,
J.
,
Yang
,
C.
,
Zhang
,
W.
, and
Sun
,
D.
,
2015
, “
Turbulent Convective Heat Transfer of CO2 in a Helical Tube at Near-Critical Pressure
,”
Int. J. Heat Mass Transfer
,
80
, pp.
748
758
.
17.
Akhavan-Behabadi
,
M. A.
,
Pakdaman
,
M. F.
, and
Ghazvini
,
M.
,
2012
, “
Experimental Investigation on the Convective Heat Transfer of Nanofluid Flow Inside Vertical Helically Coiled Tubes Under Uniform Wall Temperature Condition
,”
Int. Commun. Heat Mass Transfer
,
39
(
4
), pp.
556
564
.
18.
Pacio
,
J.
,
Daubner
,
M.
,
Fellmoser
,
F.
,
Litfin
,
K.
, and
Wetzel
,
T.
,
2016
, “
Experimental Study of Heavy-Liquid Metal (LBE) Flow and Heat Transfer Along a Hexagonal 19-Rod Bundle With Wire Spacers
,”
Nucl. Eng. Des.
,
301
, pp.
111
127
.
19.
Marocco
,
L.
,
Loges
,
A.
,
Wetzel
,
T.
, and
Stieglitz
,
R.
,
2012
, “
Experimental Investigation of the Turbulent Heavy Liquid Metal Heat Transfer in the Thermal Entry Region of a Vertical Annulus With Constant Heat Flux on the Inner Surface
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6435
6445
.
20.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
21.
Weigand
,
B.
, and
Beer
,
H.
,
1992
, “
Fluid Flow and Heat Transfer in an Axially Rotating Pipe Subjected to External Convection
,”
Int. J. Heat Mass Transfer
,
35
(
7
), pp.
1803
1809
.
22.
Cheng
,
X.
, and
Tak
,
N. I.
,
2006
, “
Investigation on Turbulent Heat Transfer to Lead-Bismuth Eutectic Flows in Circular Tubes for Nuclear Applications
,”
Nucl. Eng. Des.
,
236
(
4
), pp.
385
393
.
23.
Jeppson
,
D. W.
,
Ballif
,
J. L.
,
Yuan
,
W. W.
, and
Chou
,
B. E.
,
1978
,
Lithium Literature Review: Lithium's Properties and Interactions
,
Hanford Engineering Development Lab
,
Richland, WA
.
24.
Davison
,
H. W.
,
1968
,
Compilation of Thermophysical Properties of Liquid Lithium
,
National Aeronautics and Space Administration
,
Washington, DC
.
25.
Itō
,
H.
,
1959
, “
Friction Factors for Turbulent Flow in Curved Pipes
,”
ASME J. Basic Eng.
,
81
(
2
), pp.
123
132
.
26.
Srinivasan
,
P. S.
,
Nandapurkar
,
S. S.
, and
Holland
,
F. A.
,
1970
, “
Friction Factors for Coils
,”
Trans. Inst. Chem. Eng. Chem. Eng.
,
48
(
4–6
), pp.
T156
T161
.
27.
Grötzbach
,
G.
,
2013
, “
Challenges in Low-Prandtl Number Heat Transfer Simulation and Modelling
,”
Nucl. Eng. Des.
,
264
, pp.
41
55
.
28.
Mochizuki
,
H.
,
2019
, “
Consideration on Nusselt Numbers of Liquid Metals Flowing in Tubes
,”
Nucl. Eng. Des.
,
351
, pp.
1
19
.
29.
Kakac
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
,
1987
,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley-Interscience
,
Hoboken, NJ
.
You do not currently have access to this content.