Abstract

To solve the problem of heat reflow in the fan rotation center of the forced convection cooling system in the engine compartment, this study established a calculation model of the external flow field of the engine compartment’s cooling module. It then used the CFD numerical simulation method to calculate and analyze the heat flow characteristics of the existing radiator and compared these with the experimental results. Accordingly, the region where the heat reflux occurred and the reason for the heat reflow were found. The existing heat dissipation scheme was recalculated by using the secondary heat dissipation model, and an optimized and improved scheme was proposed to introduce a deflector cone structure to eliminate heat reflow. The research results showed that the secondary heat dissipation model could more accurately describe the heat reflow problem of the engine compartment, the heat flow organization of the improved structure was more reasonable, and the temperature distribution was more uniform. Moreover, the theoretical heat dissipation effect of the improved structure was more than 10% higher than that of the existing structure.

References

1.
Che Sidik
,
N. A.
,
Witri Mohd Yazid
,
M. N. A.
, and
Mamat
,
R.
,
2017
, “
Recent Advancement of Nanofluids in Engine Cooling System
,”
Renewable Sustainable Energy Rev.
,
75
(
6
), pp.
137
144
.
2.
Jamroziak
,
K.
,
Kwasniowski
,
S.
,
Kosobudzki
,
M.
, and
Zajac
,
P.
,
2019
, “
Analysis of Heat Exchange in the Powertrain of a Road Vehicle With a Retarder
,”
Eksploat. Niezawodn. Maintenance Reliab.
,
21
(
4
), pp.
577
584
.
3.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2014
, “
Thermal Performance of Automobile Radiator Using Carbon Nanotube-Water Nanofluid-Experimental Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041009
.
4.
Liu
,
Y.
,
Zhou
,
D. S.
, and
Zhang
,
H. G.
,
2007
, “
A Dynamic Simulation Model for Cooling System of Vehicle Internal Combustion Engine
,”
Chin. Int. Combust. Engine Eng.
,
28
(
3
), pp.
49
51
.
5.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Jamnani
,
M. S.
, and
Hoseini
,
S. M.
,
2011
, “
Improving the Cooling Performance of Automobile Radiator With Al2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1833
1838
.
6.
Huang
,
W. L.
,
Zhang
,
G. D.
, and
Guo
,
J. Z.
,
2017
, “
Performance of the Multi-fan Radiator for Vehicle Engines
,”
J. Wuhan Univ. Sci. Technol.: Nat. Sci. Ed.
,
40
(
1
), pp.
65
69
.
7.
Lee
,
S. H.
,
Hur
,
N.
, and
Kang
,
S.
,
2014
, “
An Efficient Method to Predict the Heat Transfer Performance of a Louver Fin Radiator in an Automotive Power System
,”
J. Mech. Sci. Technol.
,
28
(
1
), pp.
145
155
.
8.
Kulkarni
,
A.
,
Ballal
,
Y.
, and
Bagi
,
S.
,
2015
, “
Enhancement of the Performance of Hydraulic Power Pack by Increasing Heat Dissipation
,”
Int. J. Trend Res. Dev.
,
2
(
5
), pp.
361
364
.
9.
Zhang
,
S. Y.
, and
Guo
,
X. Z.
,
2021
, “
Matching Analysis of Cooling System Performance of Vehicle Engine Radiator
,”
Mach. Des. Manuf.
,
364
(
6
), pp.
240
248
.
10.
Birbir
,
F.
,
Büyükaksoy
,
A.
, and
Chumachenko
,
V. P.
,
2002
, “
Wiener-Hopf Analysis of the Two-Dimensional Box-Like Horn Radiator
,”
Int. J. Eng. Sci.
,
40
(
1
), pp.
51
66
.
11.
Konev
,
V.
,
Polovnikov
,
E.
,
Krut
,
O.
,
Merdanov
,
S.
, and
Zakirzakov
,
G.
,
2017
, “
Investigation and Development of the Thermal Preparation System of the Trail Builder Machinery Hydraulic Actuator
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
221
, p.
012001
.
12.
Guo
,
B.
,
Dell’orco
,
G.
, and
Liliana
,
T.
,
2016
, “
Thermal-Hydraulic Analysis of ITER Component Cooling Water System Loop 2B
,”
J. Fusion. Energy
,
35
(
3
), pp.
335
340
.
13.
Chen
,
J. S.
,
Zhang
,
Z. W.
, and
Liu
,
G. N.
,
2002
, “
Thermal Characteristics Analysis of a Certain Type of Truck Crane Engine Under Highspeed No-Load Condition
,”
J. Hunan Univ. Nat. Sci.
,
49
(
4
), pp.
177
185
.
14.
Zhu
,
J. J.
, and
Jie
,
S. L.
,
2021
, “
Matching Analysis of Radiator of High Power Automobile Engine Based on CFD
,”
Mach. Des. Manuf.
,
369
(
11
), pp.
287
291
.
15.
Siddiqui
,
M. A.
,
Khaliq
,
A.
, and
Kumar
,
R.
,
2021
, “
Proposal and Analysis of a Novel Cooling-Power Cogeneration System Driven by the Exhaust Gas Heat of HCCI Engine Fuelled by Wet-Ethanol
,”
Energy
,
232
, p.
120954
.
16.
Pritish
,
R. P.
,
Srinath
,
V. E.
, and
Khai
,
N.
,
2013
, “
Multi-Layer Mini-Channel and Ribbed Mini-Channel Based High Performance Cooling Configurations for Automotive Inverters-Part A: Design and Evaluation
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
3
), p.
031010
.
17.
Han
,
F.
,
Guo
,
H.
, and
Ding
,
X.
,
2021
, “
Design and Optimization of a Liquid Cooled Heat Sink for a Motor Inverter in Electric Vehicles
,”
Appl. Energy
,
291
, p.
116819
.
18.
Ozdemira
,
M. R.
,
Mahmoudb
,
M. M.
, and
Karayiannis
,
T. G.
,
2021
, “
Flow Boiling of Water in a Rectangular Metallic Micro-Channel
,”
Heat. Transfer. Eng.
,
42
(
6
), pp.
492
516
.
19.
Guo
,
L.
,
Zhang
,
S.
, and
Hu
,
J.
,
2022
, “
Flow Boiling Heat Transfer Characteristics of Two-Phase Flow in Microchannels
,”
AIP Adv.
,
12
(
5
), p.
055219
.
20.
Minav
,
T.
,
Papini
,
L.
, and
Jarf
,
A.
,
2016
, “
Direct Driven Hydraulics: What Can Possibly Go Wrong-A Thermal Analysis
,”
2016 XXII International Conference on Electrical Machines
,
Lausanne, Switzerland: IEEE
, pp.
1618
1624
.
21.
Lin
,
K. T.
,
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2020
, “
General Correlations for Laminar Flow Friction Loss and Heat Transfer in Plain Rectangular Plate-Fin Cores
,”
ASME J. Heat and Mass Transfer
,
142
(
12
), p.
121801
.
22.
Karmakar
,
A.
, and
Acharya
,
S.
,
2021
, “
Numerical Simulation of Falling Film Flow Hydrodynamics Over Round Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
173
(
5
), pp.
121175
112183
.
23.
Nunez
,
C. M.
,
Klitzman
,
S.
, and
Goodman
,
A.
,
2010
, “
Lead Exposure Among Automobile Radiator Repair Workers and Their Children in New York City
,”
Am. J. Ind. Med.
,
23
(
5
), pp.
763
777
.
24.
Li
,
J. W.
,
Yang
,
Z.
, and
Duan
,
Y. Y.
,
2021
, “
Numerical Simulation of Single Bubble Growth and Heat Transfer Considering Multi-parameter Influence During Nucleate Pool Boiling of Water
,”
AIP Adv.
,
11
(
12
), p.
125207
.
25.
Choi
,
H.
,
Li
,
C.
, and
Peterson
,
G. P.
,
2021
, “
Dynamic Processes of Nanobubbles: Growth, Collapse, and Coalescence
,”
ASME J. Heat and Mass Transfer
,
143
(
10
), p.
102501
.
You do not currently have access to this content.