In this research, carbon nanotube (CNT) composite with epoxy resin is fabricated. The dynamic properties of the nanotube composites are evaluated. A testing apparatus for obtaining dynamic properties of composites is set up, and measurement procedures are given. In particular, the loss factors together with stiffness are measured for the specimens with different CNT weight ratios. Experimental results show that CNT additive can provide the composite with several times higher damping as compared with pure epoxy. A composite unit cell model containing a single CNT segment is developed by using the finite element method. Composite loss factors are calculated based on the average ratio of the unit cell energy loss to the unit cell energy input. Calculated loss factors under different strain are compared with experimental data. With the validated model, a parametric study is subsequently performed. Parameters, such as CNT dimension and CNT alignment orientation, are studied. The factors that lead to higher composite damping capacity are identified.

1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Yu
,
M. F.
,
Lourie
,
O.
, and
Dyer
,
M. J.
, 2000, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
0036-8075,
287
, pp.
637
640
.
3.
Thostenson
,
E. T.
,
Ren
,
Z. F.
, and
Chou
,
T. W.
, 2001, “
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
1899
1912
.
4.
Ajayan
,
P. M.
,
Stephan
,
O.
,
Colliex
,
C.
, and
Trauth
,
D.
, 1994, “
Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite
,”
Science
0036-8075,
265
(
5176
), pp.
1212
1214
.
5.
Qian
,
D.
,
Dickey
,
E.
,
Andrews
,
C. R.
, and
Rantell
,
T.
, 2000, “
Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Appl. Phys. Lett.
0003-6951,
76
, pp.
2868
2870
.
6.
Ruan
,
S. L.
,
Gao
,
P.
,
Yang
,
X. G.
, and
Yu
,
T. X.
, 2003, “
Toughening High Performance Ultrahigh Molecular Weight Polyethylene Using Multiwalled Carbon Nanotubes
,”
Polymer
0032-3861,
44
(
19
), pp.
5643
5654
.
7.
Lau
,
K. T.
,
Shi
,
S. Q.
,
Zhou
,
L. M.
, and
Cheng
,
H. M.
, 2003, “
Micro-Hardness and Flexural Properties of Randomly-Oriented Carbon Nanotube Composites
,”
J. Compos. Mater.
0021-9983,
37
(
4
), pp.
365
376
.
8.
Koratkar
,
N.
,
Wei
,
B.
, and
Ajayan
,
P. M.
, 2002, “
Carbon Nanotube Films for Damping Applications
,”
Adv. Mater.
0935-9648,
14
(
13–14
), pp.
997
1000
.
9.
Koratkar
,
N.
,
Wei
,
B.
, and
Ajayan
,
P. M.
, 2003, “
Multifunctional Structural Reinforcement Featuring Carbon Nanotube Films
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1525
1531
.
10.
Lass
,
E. A.
,
Koratkar
,
N. A.
,
Ajayan
,
P. M.
,
Wei
,
B. Q.
, and
Keblinski
,
P.
, 2002, “
Damping and Stiffness Enhancement in Composite Systems With Carbon Nanotubes Films
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
740
, pp.
371
376
.
11.
Lass
,
E.
,
Ajayan
,
P.
, and
Koratkar
,
N.
, 2003, “
Engineered Connectivity in Carbon Nanotube Films for Damping Applications
,”
Proc. SPIE
0277-786X,
5052
, pp.
141
150
.
12.
Zhou
,
X.
,
Shin
,
E.
,
Wang
,
K. W.
, and
Bakis
,
C. E.
, 2004, “
Interfacial Damping Characteristics of Carbon Nanotube Based Composites
,”
Compos. Sci. Technol.
0266-3538,
64
(
15
), pp.
2425
2437
.
13.
Zhou
,
X.
,
Wang
,
K. W.
, and
Bakis
,
C. E.
, 2004, “
Effects of Interfacial Friction on Composites Containing Nanotube Ropes
,”
Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Paper No. AIAA-2004-1784.
14.
Suhr
,
J.
,
Koratkar
,
N.
,
Keblinski
,
P.
, and
Ajayan
,
P.
, 2005, “
Viscoelasticity in Carbon Nanotube Composites
,”
Nature Mater.
1476-1122,
4
, pp.
134
137
.
15.
Liu
,
A.
,
Huang
,
J. H.
,
Wang
,
K. W.
, and
Bakis
,
C. E.
, 2006, “
Effects of Interfacial Friction on the Damping Characteristics of Composites Containing Randomly Oriented Carbon Nanotube Ropes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
17
, pp.
217
229
.
16.
Liu
,
A.
,
Wang
,
K. W.
,
Bakis
,
C. E.
, and
Huang
,
J. H.
, 2006, “
Analysis of Damping Characteristics of a Viscoelastic Polymer Filled With Randomly Oriented Single-Wall Nanotube Ropes
,”
Proc. SPIE
0277-786X,
6169
, pp.
275
291
.
17.
International Standard, 1996, “
Plastics—Determination of Dynamic Mechanical Properties—Shear Vibration—Non-Resonance Method
,” Paper No. ISO 6721-6.
18.
American National Standard, 1998, “
Resonance Method for Measuring the Dynamic Mechanical Properties of Viscoelastic Materials
,” Paper No. ANSI S2.22.
19.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Wise
,
K. E.
,
Park
,
C.
, and
Siochi
,
E. J.
, 2002, “
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,” Report No. NASA/CR-2002-211760.
20.
Liu
,
Y. J.
, and
Chen
,
X. L.
, 2003, “
Continuum Models of Carbon Nanotube-Based Composites Using the Boundary Element Method
,”
Electronic Journal of Boundary Elements
,
1
, pp.
316
335
.
21.
Andrews
,
R.
, and
Wiesenberger
,
M. C.
, 2004, “
Carbon Nanotube Polymer Composites
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
8
, pp.
31
37
.
22.
ANSYS Inc.
, 2005, Theory Reference 10.0.
23.
Yu
,
M. F.
,
Lourie
,
O.
, and
Dyer
,
M. J.
, 2000, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
0036-8075,
287
, pp.
637
640
.
24.
Wong
,
M.
,
Paramsothy
,
M.
,
Xu
,
X. J.
,
Ren
,
Y.
,
Li
,
S.
, and
Liao
,
K.
, 2003, “
Physical Interactions at Carbon Nanotube-Polymer Interface
,”
Polymer
0032-3861,
44
, pp.
7757
7764
.
You do not currently have access to this content.