Abstract

We derive the generalized Helmholtz equation (GHE) governing nonisentropic acoustic fluctuations in a quasi 1D duct with nonuniform cross section, mean temperature gradient, and nonuniform mean flow. Nonisentropic effects are included via heat conduction terms in the mean and fluctuating energy equations. To derive the Helmholtz equation exclusively in terms of the fluctuating pressure field, a relationship between density and pressure fluctuations is needed, which is shown to be a second-order differential equation for nonisentropic motions. Novel analytical solutions that are accurate for both low/high frequencies and small/large mean gradients are presented for the GHE based on the Wentzel–Kramers–Brillouin (WKB) method. WKB solutions are developed using the ansatz that the pressure fluctuation field has a travelling wave form, p^(x)=exp[0x(a+ib)dx], where x is the axial coordinate. Substituting this form into the Helmholtz equation yields coupled, nonlinear ordinary differential equations (ODEs) for a and b. Analytical solutions to the ODEs are obtained using the approximations of high frequency and slowly varying mean properties. This simplification allows us to obtain the lower order solutions b0 and a0. We then enhance solution accuracy by using a0 to solve for b1 without any approximations. Finally, b1 is employed to get a1, giving us the higher order solution. The p^ calculated from (a1, b1) is in good to excellent agreement with numerical solution of the GHE for both low and high frequencies and for a range of mean Mach numbers, including M¯1.

References

1.
Alfredson
,
R. J.
, and
Davies
,
P. O. A. L.
,
1971
, “
Performance of Exhaust Silencer Components
,”
J. Sound. Vib.
,
15
(
2
), pp.
175
196
.
2.
Munjal
,
M. L.
,
1987
,
Acoustics of Ducts and Mufflers With Application to Exhaust and Ventilation System Design
,
John Wiley & Sons
,
New York
.
3.
Mangiarotty
,
R. A.
,
1969
, “
Acoustic Lining Concepts and Materials for Engine Ducts
,”
J. Acous. Soc. Am.
,
46
(
1A
), pp.
77
78
.
4.
Mangiarotty
,
R. A.
,
1971
, “
The Reduction of Aircraft Engine Fan-Compressor Noise Using Acoustic Linings
,”
J. Sound. Vib.
,
18
(
4
), pp.
565
576
. http://dx.doi.org10.1016/0022-460X(71)90107-6
5.
Nayfeh
,
A. H.
,
Kaiser
,
J. E.
, and
Telionis
,
D. P.
,
1975
, “
Acoustics of Aircraft Engine-Duct Systems
,”
AIAA. J.
,
13
(
2
), pp.
130
153
.
6.
Cummings
,
A.
,
1977
, “
Ducts With Axial Temperature Gradients: An Approximate Solution for Sound Transmission and Generation
,”
J. Sound. Vib.
,
51
(
1
), pp.
55
67
.
7.
Davies
,
P. O. A. L.
,
1988
, “
Practical Flow Duct Acoustics
,”
J. Sound. Vib.
,
124
(
1
), pp.
91
115
. URL
8.
Yazaki
,
T.
,
Takashima
,
S.
, and
Mizutani
,
F.
,
1987
, “
Complex Quasiperiodic and Chaotic States Observed in Thermally Induced Oscillations of Gas Columns
,”
Phys. Rev. Lett.
,
58
(
11
), pp.
1108
1111
.
9.
Culick
,
F. E. C.
,
1976
, “
Nonlinear Behavior of Acoustic Waves in Combustion Chambers–ii
,”
Acta Astronaut.
,
3
(
9
), pp.
735
757
.
10.
Culick
,
F. E. C.
,
1976b
, “
Nonlinear Behavior of Acoustic Waves in Combustion Chambers–i
,”
Acta Astronaut.
,
3
(
9
), pp.
715
734
.
11.
Culick
,
F. E. C.
,
1994
, “
Some Recent Results for Nonlinear Acoustics in Combustion Chambers
,”
AIAA. J.
,
32
(
1
), pp.
146
169
.
12.
Gonzalez-Flesca
,
M.
,
Scouflaire
,
P.
,
Schmitt
,
T.
,
Ducruix
,
S.
,
Candel
,
S.
, and
Méry
,
Y.
,
2018
, “
Reduced Order Modeling Approach to Combustion Instabilities of Liquid Rocket Engines
,”
AIAA. J.
,
56
(
12
), pp.
4845
4857
.
13.
Bai
,
X.
,
Cheng
,
P.
,
Li
,
Q.
,
Sheng
,
L.
, and
Kang
,
Z.
,
2020
, “
Effects of Self-Pulsation on Combustion Instability in a Liquid Rocket Engine
,”
Exp. Therm. Fluid. Sci.
,
114
(
1
), p.
110038
.
14.
French
,
A. D.
,
Panelli
,
M.
,
Di Lorenzo
,
G.
,
Schettino
,
A.
, and
Paglia
,
F.
,
2017
, “
Combustion Instability and Pressure Oscillation Numerical Simulation in a Solid Rocket Motor
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
,
Atlanta, GA
,
July 10–12
.
15.
Ji
,
S.
,
Wang
,
B.
, and
Zhao
,
D.
,
2020
, “
Numerical Analysis on Combustion Instabilities in End-Burning-Grain Solid Rocket Motors Utilizing Pressure-Coupled Response Functions
,”
Aeros. Sci. Technol.
,
98
, p.
105701
.
16.
Wang
,
Z.
,
Liu
,
P.
,
Jin
,
B.
, and
Ao
,
W.
,
2020
, “
Nonlinear Characteristics of the Triggering Combustion Instabilities in Solid Rocket Motors
,”
Acta Astronaut.
,
176
(
4
), pp.
371
382
.
17.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
Theoretical Investigation of Combustion Instability Mechanisms in Lean Premixed Gas Turbines
,”
36th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 12–15
.
18.
Bauerheim
,
M.
,
Jaravel
,
T.
,
Esclapez
,
L.
,
Riber
,
E.
,
Gicquel
,
L. Y. M.
,
Cuenot
,
B.
,
Cazalens
,
M.
,
Bourgois
,
S.
, and
Rullaud
,
M.
,
2015
, “
Multiphase Flow LES Study of the Fuel Split Effects on Combustion Instabilities in an Ultra Low-NOx Annular Combustor
,”
Turbo Expo: Power for Land, Sea, and Air
,
Montreal, Quebec, Canada
,
June 15–19
.
19.
Keller
,
J. B.
,
1954
, “
Geometrical Acoustics. I. The Theory of Weak Shock Waves
,”
J. Appl. Phys.
,
25
(
8
), pp.
938
947
.
20.
Friedrichs
,
K. O.
, and
Keller
,
Joseph B.
,
1955
, “
Geometrical Acoustics. Ii. Diffraction, Reflection, and Refraction of a Weak Spherical or Cylindrical Shock at a Plane Interface
,”
J. Appl. Phys.
,
26
(
8
), pp.
961
966
.
21.
Krokstad
,
A.
,
Strom
,
S.
, and
Sørsdal
,
S.
,
1968
, “
Calculating the Acoustical Room Response by the Use of a Ray Tracing Technique
,”
J. Sound. Vib.
,
8
(
1
), pp.
118
125
,
22.
Pierce
,
A. D.
, and
Smith
,
P. W.
,
1981
, “
Acoustics: An Introduction to Its Physical Principles and Applications
,”
Phys. Today.
,
34
(
12
), pp.
56
57
.
23.
Krylov
,
V. V
,
1989
, “
Conditions for Validity of the Geometrical-Acoustics Approximation in Application to Waves in an Acute-Angle Solid Wedge
,”
Soviet Physics – Acoustics
,
35
(
2
), pp.
176
180
. https://www.researchgate.net/publication/48354202_Conditions_for_validity_of_the_geometrical-acoustics_approximation_in_application_to_waves_in_an_acute-angle_solid_wedge
24.
Krylov
,
V. V
,
1990
, “
Geometrical-Acoustics Approach to the Description of Localized Vibrational Modes of an Elastic Solid Wedge
,”
Soviet Physics – Technical Physics
,
25
(
2
), pp.
137
140
. https://repository.lboro.ac.uk/articles/journal_contribution/Geometrical-acoustics_approach_to_the_description_of_localized_vibrational_modes_of_an_elastic_solid_wedge/9226343/1.
25.
Polack
,
J.-D.
,
1993
, “
Playing Billiards in the Concert Hall: The Mathematical Foundations of Geometrical Room Acoustics
,”
Appl. Acoust.
,
38
(
2
), pp.
235
244
.
26.
Cummings
,
A.
,
1999
, “
High Frequency Ray Acoustics Models for Duct Silencers
,”
J. Sound. Vib.
,
221
(
4
), pp.
681
708
.
27.
Pierce
,
A. D.
,
1970
, “
Physical Interpretation of the WKB Or Eikonal Approximation for Waves and Vibrations in Inhomogeneous Beams and Plates
,”
J. Acoust. Soc. Am.
,
48
(
1B
), pp.
275
284
.
28.
Tolstoy
,
I.
,
1972
, “
The W.K.B. Approximation, Turning Points, and the Measurement of Phase Velocities
,”
J. Acoust. Soc. Am.
,
52
(
1B
), pp.
356
363
,
29.
Filippi
,
P.
,
Bergassoli
,
A.
,
Habault
,
D.
, and
Lefebvre
,
J. P.
,
1998
,
Acoustics: Basic Physics, Theory, and Methods
,
Academic Press
,
Cambridge, MA
.
30.
Blackstock
,
D. T.
,
2000
,
Fundamentals of Physical Acoustics
,
John Wiley & Sons
,
New York
.
31.
Brekhovskikh
,
L. M.
, and
Godin
,
O.
,
2013
,
Acoustics of Layered Media II: Point Sources and Bounded Beams
, Vol.
10
,
Springer Science & Business Media
,
Berlin, Germany
.
32.
Rani
,
V. K.
, and
Rani
,
S. L.
,
2018
, “
Wkb Solutions to the Quasi 1-D Acoustic Wave Equation in Ducts With Non-Uniform Cross-Section and Inhomogeneous Mean Flow Properties – Acoustic Field and Combustion Instability
,”
J. Sound. Vib.
,
436
, pp.
183
219
.
33.
Umurhan
,
O. M.
,
1999
, “WKB Approximation for Acoustics in Combustion Chambers With Arbitrary Steady-State Heat Release Profiles,” Annual Research Briefs,
Center for Turbulent Research, Stanford University
, pp.
99
108
.
34.
Li
,
J.
, and
Morgans
,
A. S.
,
2017
, “
The One-Dimensional Acoustic Field in a Duct With Arbitrary Mean Axial Temperature Gradient and Mean Flow
,”
J. Sound. Vib.
,
400
, pp.
248
269
.
35.
Yeddula
,
S. R.
, and
Morgans
,
A. S.
,
2021
, “
A Semi-analytical Solution for Acoustic Wave Propagation in Varying Area Ducts With Mean Flow
,”
J. Sound. Vib.
,
492
, p.
115770
.
36.
Yeddula
,
S. R.
,
Guzmán-Iñigo
,
J.
, and
Morgans
,
A. S.
,
2022
, “
A Solution for the Quasi-One-Dimensional Linearised Euler Equations With Heat Transfer
,”
J. Fluid. Mech.
,
936
, p.
R3
.
37.
Duran
,
I.
, and
Moreau
,
S.
,
2013
, “
Solution of the Quasi-One-Dimensional Linearized Euler Equations Using Flow Invariants and the Magnus Expansion
,”
J. Fluid. Mech.
,
723
, pp.
190
231
.
38.
Peat
,
K. S.
,
1988
, “
The Acoustical Impedance at Discontinuities of Ducts in the Presence of a Mean Flow
,”
J. Sound. Vib.
,
127
(
1
), pp.
123
132
.
39.
Peat
,
K. S.
,
1997
, “
Convected Acoustic Wave Motion Along a Capillary Duct With an Axial Temperature Gradient
,”
J. Sound. Vib.
,
203
(
5
), pp.
855
866
.
40.
Peat
,
K. S.
,
1994
, “
A First Aproximation to the Effects of Mean Flow on Sound Propagation Through Cylindrical Capillary Tubes
,”
J. Sound. Vib.
,
175
(
4
), pp.
475
489
.
41.
Munjal
,
M. L.
, and
Prasad
,
M. G.
,
1986
, “
On Plane–Wave Propagation in a Uniform Pipe in the Presence of a Mean Flow and a Temperature Gradient
,”
J. Acous. Soc. Am.
,
80
(
5
), pp.
1501
1506
.
42.
Robins
,
A. J.
,
1993
, “
Exact Solutions of the Helmholtz Equation for Plane Wave Propagation in a Medium With Variable Density and Sound Speed
,”
J. Acoust. Soc. Am.
,
93
(
3
), pp.
1347
1352
.
43.
Sujith
,
R. I.
,
Waldherr
,
G. A.
, and
Zinn
,
B. T.
,
1995
, “
An Exact Solution for One-Dimensional Acoustic Fields in Ducts With an Axial Temperature Gradient
,”
J. Sound. Vib.
,
184
(
3
), pp.
389
402
.
44.
Karthik
,
B.
,
Manoj Kumar
,
B.
, and
Sujith
,
R. I.
,
2000
, “
Exact Solutions to One-Dimensional Acoustic Fields With Temperature Gradient and Mean Flow
,”
J. Acoust. Soc. Am.
,
108
(
1
), pp.
38
43
.
45.
Subrahmanyam
,
P. B.
,
Sujith
,
R. I.
, and
Lieuwen
,
T. C.
,
2001
, “
A Family of Exact Transient Solutions for Acoustic Wave Propagation in Inhomogeneous, Non-Uniform Area Ducts
,”
J. Sound. Vib.
,
240
(
4
), pp.
705
715
.
46.
Bala Subrahmanyam
,
P.
,
Sujith
,
R. I.
, and
Lieuwen
,
T. C.
,
2003
, “
Propagation of Sound in Inhomogeneous Media: Exact, Transient Solutions in Curvilinear Geometries
,”
ASME J. Vib. Acoust.
,
125
(
2
), pp.
133
136
.
47.
Veeraragavan
,
A.
,
Pesala
,
B.
, and
Sujith
,
R. I.
, “
An Integral Approach to Modelling Sound Propagation Through a Finite Combustion Zone
,”
Proceedings of the 44th AIAA Aerospace Sciences Meeting, Reno, NV
,
Jan. 9–12
, pp.
6570
6580
.
48.
Holzinger
,
T.
,
Cardenas
,
A.
, and
Polifke
,
W.
,
2020
, “
An Analytical Solution for Acoustic Wave Propagation in a Narrow Duct With Mean Temperature Gradient
,”
16th AIAA/CEAS Aeroacoustics Conference
,
Stockholm, Sweden
,
June 7–9
.
49.
Bednarik
,
M.
,
Cervenka
,
M.
,
Lotton
,
P.
, and
Penelet
,
G.
,
2016
, “
Behavior of Plane Waves Propagating Through a Temperature-Inhomogeneous Region
,”
J. Sound. Vib.
,
362
(
Supplement C
), pp.
292
304
.
50.
Basu
,
S.
, and
Rani
,
S. L.
,
2021
, “
Generalized Acoustic Helmholtz Equation and Its Boundary Conditions in a Quasi 1-D Duct With Arbitrary Mean Properties and Mean Flow
,”
J. Sound. Vib.
,
512
(
8
), p.
116377
.
51.
Basu
,
S.
, and
Rani
,
S. L.
,
2022
, “
Acoustic Nonlinearities in a Quasi 1-D Duct With Arbitrary Mean Properties and Mean Flow
,”
J. Sound. Vib.
,
528
(
1
), p.
116862
.
52.
Kannuluik
,
W. G.
, and
Carman
,
E. H.
,
1951
, “
The Temperature Dependence of the Thermal Conductivity of Air
,”
Aust. J. Chem.
,
4
(
3
), pp.
305
314
.
53.
Dormand
,
J. R.
, and
Prince
,
P. J.
,
1986
, “
A Reconsideration of Some Embedded Runge–Kutta Formulae
,”
J. Comput. Appl. Math.
,
15
(
2
), pp.
203
211
.
54.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The Matlab Ode Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.
55.
Basu
,
S.
,
2019
, “
On the Neumann Boundary Condition for the Acoustic-Wave Helmholtz Equation, and the Relationship Between Pressure and Density Fluctuations
, Master’s thesis,
The University of Alabama
,
Huntsville
, Al.
You do not currently have access to this content.