Abstract

Structures with inertia periodicity present the phenomenon of band gap formation, i.e., the appearance of regions in the frequency spectrum with a higher modal spacing and lower vibration response. Rotating machines can also present such phenomenon when their working elements are mounted periodically along the shaft (longitudinal periodicity). In the present work, this phenomenon in rotating machines is reviewed, and it is shown that band gaps can be moved toward desired locations in the frequency spectrum by mounting the working elements at optimized positions along the shaft. For that, a mathematical model of the rotating machine is correlated to experimental results, and the model is used to optimize the position of the working elements (disks) in the rotor. The optimized rotor is then experimentally tested, and the resultant band gap is measured. The obtained experimental results show that one can indeed tailor the band gaps and move them toward higher or lower frequencies as desired without changing the inertia of the working elements.

References

1.
Mead
,
D. M.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound. Vib.
,
190
(
3
), pp.
495
524
.
2.
Junyi
,
L.
,
Ruffini
,
V.
, and
Balint
,
D.
,
2016
, “
Measuring the Band Structures of Periodic Beams Using the Wave Superposition Method
,”
J. Sound. Vib.
,
382
, pp.
158
178
.
3.
Tang
,
L.
, and
Cheng
,
L.
,
2017
, “
Broadband Locally Resonant Band Gaps in Periodic Beam Structures With Embedded Acoustic Black Holes
,”
J. Appl. Phys.
,
121
(
19
), p.
194901
.
4.
Pelat
,
A.
,
Gallot
,
T.
, and
Gautier
,
F.
,
2019
, “
On the Control of the First Bragg Band Gap in Periodic Continuously Corrugated Beam for Flexural Vibration
,”
J. Sound. Vib.
,
446
, pp.
249
262
.
5.
Syed
,
M.
, and
Bishay
,
P. L.
,
2019
, “
Analysis and Design of Periodic Beams for Vibration Attenuation
,”
J. Vib. Control
,
25
(
1
), pp.
228
239
.
6.
Timorian
,
S.
,
Petrone
,
G.
,
Rosa
,
S.
,
Franco
,
F.
,
Ouisse
,
M.
, and
Bouhaddi
,
M.
,
2019
, “
Spectral Analysis and Structural Response of Periodic and Quasi-Periodic Beams
,”
J. Mech. Eng. Sci.
,
233
(
23–24
), pp.
7498
7512
.
7.
Xiao
,
Y.
,
Wen
,
J.
,
Wang
,
G.
, and
Wen
,
X.
,
2013
, “
Theoretical and Experimental Study of Locally Resonant and Bragg Band Gaps in Flexural Beams Carrying Periodic Arrays of Beam-Like Resonators
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041006
.
8.
Hajhosseini
,
M.
, and
Ebrahimi
,
S.
,
2019
, “
Analysis of Vibration Band Gaps in an Euler–Bernoulli Beam With Periodic Arrays of Meander-Shaped Beams
,”
J. Vib. Control
,
25
(
1
), pp.
41
51
.
9.
Prasad
,
R.
, and
Sarkar
,
A.
,
2019
, “
Broadband Vibration Isolation for Rods and Beams Using Periodic Structure Theory
,”
ASME J. Appl. Mech.
,
86
(
4
), p.
021004
.
10.
API, 617 – Axial and Centrifugal Compressors and Expander-Compressors, American Petroleum Institute, Washington, 2014.
11.
ISO, 20816-1:2016 – Mechanical Vibration – Measurement and Evaluation of Machine Vibration, International Organization for Standardization, Geneva, 2016.
12.
Li
,
L.
, and
Cai
,
A.
,
2016
, “
Low-Frequency Band Gap Mechanism of Torsional Vibration of Lightweight Elastic Metamaterial Shafts
,”
Eur. Phys. J. Appl. Phys.
,
75
(
1
), p.
10501
.
13.
Li
,
L.
,
Lv
,
R.
,
Cai
,
A.
,
Xie
,
M.
,
Chen
,
Y.
, and
Huang
,
G.
,
2019
, “
Low-Frequency Vibration Suppression of a Multi-layered Elastic Metamaterial Shaft With Discretized Scatters
,”
J. Phys. D: Appl. Phys.
,
52
(
5
), p.
055105
.
14.
Prado
,
L. S.
, and
Ritto
,
T. G.
,
2020
, “
Vibration Reduction of a Rotating Machine Using Resonator Rings
,”
Mech. Res. Commun.
,
107
, p.
103533
.
15.
Fan
,
L.
,
He
,
Y.
,
Chen
,
X.
, and
Zhao
,
X.
,
2020
, “
Elastic Metamaterial Shaft With a Stack-Like Resonator for Low-Frequency Vibration Isolation
,”
J. Phys. D: Appl. Phys.
,
53
(
10
), p.
105101
.
16.
Brandão
,
A. A.
,
de Paula
,
A. S.
, and
Fabro
,
A. T.
,
2022
, “
Rainbow Gyroscopic Disk Metastructures for Broadband Vibration Attenuation in Rotors
,”
J. Sound Vib.
,
532
, p.
116982
.
17.
Richards
,
D.
, and
Pines
,
D. J.
,
2003
, “
Passive Reduction of Gear Mesh Vibration Using a Periodic Drive Shaft
,”
J. Sound. Vib.
,
264
, pp.
317
342
.
18.
Alsaffar
,
Y.
,
Sassi
,
S.
, and
Baz
,
A.
,
2018
, “
Band Gap Characteristics of Periodic Gyroscopic Systems
,”
J. Sound. Vib.
,
435
, pp.
301
322
.
19.
Lamas
,
P. B.
, and
Nicoletti
,
R.
,
2022
, “
The Band Gap Formation in Rotors With Longitudinal Periodicity and Quasi-Periodicity
,”
ASME J. Eng. Gas Turbines Power.
,
144
(
5
), p.
051003
.
20.
Lamas
,
P. B.
, and
Nicoletti
,
R.
,
2022
, “
Experimental Evidence of the Band Gap Formation in Rotors With Longitudinal Periodicity
,”
ASME J. Eng. Gas Turbines Power
.
21.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
ASME J. Eng. Ind.
,
98
(
2
), pp.
593
600
.
22.
Nelson
,
H. D.
,
1980
, “
A Finite Rotating Shaft Element Using Timoshenko Beam Theory
,”
ASME J. Mech. Des.
,
102
(
4
), pp.
793
803
.
23.
Maia
,
N. M. M.
, and
Silva
,
J. M. M.
,
1997
,
Theoretical and Experimental Modal Analysis
,
Research Studies Press
,
Taunton
.
24.
Lalanne
,
M.
, and
Ferraris
,
G.
,
1998
,
Rotordynamics Prediction in Engineering
,
John Wiley & Sons
,
New York
.
25.
Rao
,
S.
,
2009
,
Engineering Optimization: Theory and Practice
,
John Wiley & Sons
,
New York
.
26.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
,
Springer Verlag
,
Berlin
.
You do not currently have access to this content.