Abstract

Metasurfaces are advantageous in wavefront manipulation owing to their compact and flat nature. Particularly, ultrathin and completely smooth metasurfaces with giant phase delay and perfect impedance match are critically required for practical applications. Here, we propose an ultrathin and holeless metasurface composed of simply a pair of membranes. This metasurface supports duo unity transmissions with completely conjugate phase shifts occurring at two extremely close frequencies. This allows the metasurface to present giant phase delay and endow with high refractive index (n = 18) when the wave penetrates through. Such a property is employed to control the wavefront of acoustic waves to realize planar lens focusing, negative refraction, negative reflection, and directional emission. The proposed design principle of acoustic metasurface provides promising avenues for acoustic wave manipulation and may enable extensive applications in beam steering, acoustic imaging, energy harvesting, and surface waves.

References

1.
Yang
,
S.
,
Page
,
J. H.
,
Liu
,
Z.
,
Cowan
,
M. L.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2004
, “
Focusing of Sound in a 3D Phononic Crystal
,”
Phys. Rev. Lett.
,
93
(
2
), p.
024301
.
2.
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2014
, “
Negative Refraction of Elastic Waves at the Deep-Subwavelength Scale in a Single-Phase Metamaterial
,”
Nat. Commun.
,
5
(
1
), pp.
1
8
.
3.
Kaina
,
N.
,
Lemoult
,
F.
,
Fink
,
M.
, and
Lerosey
,
G.
,
2015
, “
Negative Refractive Index and Acoustic Superlens From Multiple Scattering in Single Negative Metamaterials
,”
Nature
,
525
(
7567
), pp.
77
81
.
4.
Zhang
,
X.
, and
Liu
,
Z.
,
2004
, “
Negative Refraction of Acoustic Waves in Two-Dimensional Phononic Crystals
,”
Appl. Phys. Lett.
,
85
(
2
), pp.
341
343
.
5.
Craster
,
R. V.
, and
Guenneau
,
S.
,
2013
,
Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking
,
Springer
,
New York London
.
6.
Zhu
,
J.
,
Christensen
,
J.
,
Jung
,
J.
,
Martin-Moreno
,
L.
,
Yin
,
X.
,
Fok
,
L.
,
Zhang
,
X.
, and
Garcia-Vidal
,
F. J.
,
2011
, “
A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging
,”
Nat. Phys.
,
7
(
1
), pp.
52
55
.
7.
Zhang
,
S.
,
Yin
,
L.
, and
Fang
,
N.
,
2009
, “
Focusing Ultrasound With an Acoustic Metamaterial Network
,”
Phys. Rev. Lett.
,
102
(
19
), p.
194301
.
8.
Zigoneanu
,
L.
,
Popa
,
B. I.
, and
Cummer
,
S. A.
,
2011
, “
Design and Measurements of a Broadband Two-Dimensional Acoustic Lens
,”
Phys. Rev. B
,
84
(
2
), p.
024305
.
9.
Wang
,
W.
,
Xie
,
Y.
,
Konneker
,
A.
,
Popa
,
B. I.
, and
Cummer
,
S. A.
,
2014
, “
Design and Demonstration of Broadband Thin Planar Diffractive Acoustic Lenses
,”
Appl. Phys. Lett.
,
105
(
10
), p.
101904
.
10.
Zhao
,
S. D.
,
Chen
,
A. L.
,
Wang
,
Y. S.
, and
Zhang
,
C.
,
2018
, “
Continuously Tunable Acoustic Metasurface for Transmitted Wavefront Modulation
,”
Phys. Rev. Appl.
,
10
(
5
), p.
054066
.
11.
Zhang
,
P.
,
Li
,
T.
,
Zhu
,
J.
,
Zhu
,
X.
,
Yang
,
S.
,
Wang
,
Y.
,
Yin
,
X.
, and
Zhang
,
X.
,
2014
, “
Generation of Acoustic Self-Bending and Bottle Beams by Phase Engineering
,”
Nat. Commun.
,
5
(
1
), pp.
1
9
.
12.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wei
,
Q.
,
Wu
,
D. J.
, and
Liu
,
X. J.
,
2018
, “
Broadband Acoustic Focusing by Airy-Like Beams Based on Acoustic Metasurfaces
,”
J. Appl. Phys.
,
123
(
4
), p.
044503
.
13.
Zhang
,
S.
,
Xia
,
C.
, and
Fang
,
N.
,
2011
, “
Broadband Acoustic Cloak for Ultrasound Waves
,”
Phys. Rev. Lett.
,
106
(
2
), p.
024301
.
14.
Zigoneanu
,
L.
,
Popa
,
B. I.
, and
Cummer
,
S. A.
,
2014
, “
Three-Dimensional Broadband Omnidirectional Acoustic Ground Cloak
,”
Nat. Mater.
,
13
(
4
), pp.
352
355
.
15.
Faure
,
C.
,
Richoux
,
O.
,
Félix
,
S.
, and
Pagneux
,
V.
,
2016
, “
Experiments on Metasurface Carpet Cloaking for Audible Acoustics
,”
Appl. Phys. Lett.
,
108
(
6
), p.
064103
.
16.
Farhat
,
M.
,
Guenneau
,
S.
, and
Enoch
,
S.
,
2009
, “
Ultrabroadband Elastic Cloaking in Thin Plates
,”
Phys. Rev. Lett.
,
103
(
2
), p.
024301
.
17.
Kildishev
,
A. V.
,
Boltasseva
,
A.
, and
Shalaev
,
V. M.
,
2013
, “
Planar Photonics With Metasurfaces
,”
Science
,
339
(
6125
), p.
1232009
.
18.
Ma
,
G.
,
Yang
,
M.
,
Xiao
,
S.
,
Yang
,
Z.
, and
Sheng
,
P.
,
2014
, “
Acoustic Metasurface With Hybrid Resonances
,”
Nat. Mater.
,
13
(
9
), pp.
873
878
.
19.
Xie
,
Y.
,
Wang
,
W.
,
Chen
,
H.
,
Konneker
,
A.
,
Popa
,
B. I.
, and
Cummer
,
S. A.
,
2014
, “
Wavefront Modulation and Subwavelength Diffractive Acoustics With an Acoustic Metasurface
,”
Nat. Commun.
,
5
(
1
), p.
5553
.
20.
Fu
,
Y.
,
Shen
,
C.
,
Cao
,
Y.
,
Gao
,
L.
,
Chen
,
H.
,
Chan
,
C. T.
,
Cummer
,
S. A.
, and
Xu
,
Y.
,
2019
, “
Reversal of Transmission and Reflection Based on Acoustic Metagratings With Integer Parity Design
,”
Nat. Commun.
,
10
(
1
), p.
2326
.
21.
Zuo
,
S.
,
Cheng
,
Y.
, and
Liu
,
X.
,
2019
, “
Tunable Perfect Negative Reflection Based on an Acoustic Coding Metasurface
,”
Appl. Phys. Lett.
,
114
(
20
), p.
203505
.
22.
Fu
,
Y.
,
Cao
,
Y.
, and
Xu
,
Y.
,
2019
, “
Multifunctional Reflection in Acoustic Metagratings With Simplified Design
,”
Appl. Phys. Lett.
,
114
(
5
), p.
053502
.
23.
Memoli
,
G.
,
Caleap
,
M.
,
Asakawa
,
M.
,
Sahoo
,
D. R.
,
Drinkwater
,
B. W.
, and
Subramanian
,
S.
,
2017
, “
Metamaterial Bricks and Quantization of Meta-Surfaces
,”
Nat. Commun.
,
8
(
1
), p.
14608
.
24.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wu
,
D. J.
, and
Liu
,
X. J.
,
2019
, “
Broadband Airy-Like Beams by Coded Acoustic Metasurfaces
,”
Appl. Phys. Lett.
,
114
(
5
), p.
053504
.
25.
Pendry
,
J. B.
,
2000
, “
Negative Refraction Makes a Perfect Lens
,”
Phys. Rev. Lett.
,
85
(
18
), pp.
3966
3969
.
26.
Yan
,
M.
,
Lu
,
J.
,
Li
,
F.
,
Deng
,
W.
,
Huang
,
X.
,
Ma
,
J.
, and
Liu
,
Z.
,
2018
, “
On-Chip Valley Topological Materials for Elastic Wave Manipulation
,”
Nat. Mater.
,
17
(
11
), pp.
993
998
.
27.
Zhang
,
Z.
,
Tian
,
Y.
,
Wang
,
Y.
,
Gao
,
S.
,
Cheng
,
Y.
,
Liu
,
X.
, and
Christensen
,
J.
,
2018
, “
Directional Acoustic Antennas Based on Valley-Hall Topological Insulators
,”
Adv. Mater.
,
30
(
36
), p.
1803229
.
28.
Lu
,
J.
,
Qiu
,
C.
,
Ye
,
L.
,
Fan
,
X.
,
Ke
,
M.
,
Zhang
,
F.
, and
Liu
,
Z.
,
2017
, “
Observation of Topological Valley Transport of Sound in Sonic Crystals
,”
Nat. Phys.
,
13
(
4
), pp.
369
374
.
29.
Gao
,
F.
,
Xue
,
H.
,
Yang
,
Z.
,
Lai
,
K.
,
Yu
,
Y.
,
Lin
,
X.
,
Chong
,
Y.
,
Shvets
,
G.
, and
Zhang
,
B.
,
2018
, “
Topologically Protected Refraction of Robust Kink States in Valley Photonic Crystals
,”
Nat. Phys.
,
14
(
2
), pp.
140
144
.
30.
Liang
,
Z.
, and
Li
,
J.
,
2012
, “
Extreme Acoustic Metamaterial by Coiling up Space
,”
Phys. Rev. Lett.
,
108
(
11
), p.
114301
.
31.
Lu
,
M. H.
,
Liu
,
X. K.
,
Feng
,
L.
,
Li
,
J.
,
Huang
,
C. P.
,
Chen
,
Y. F.
,
Zhu
,
Y. Y.
,
Zhu
,
S. N.
, and
Ming
,
N. B.
,
2007
, “
Extraordinary Acoustic Transmission Through a 1D Grating With Very Narrow Apertures
,”
Phys. Rev. Lett.
,
99
(
17
), p.
174301
.
32.
Cai
,
X.
,
Huang
,
Z.
, and
Yang
,
J.
,
2020
, “
Traveling Sound Wave With Transverse Particle Velocity in a Metawaveguide by Using a Phase-Reversible Metasurface
,”
Phys. Rev. Appl.
,
14
(
5
), p.
054025
.
You do not currently have access to this content.