Abstract

Low-frequency broadband sound absorption with minimal dimensions and material cost is an ongoing research challenge in engineering acoustics. Common acoustic structures, such as microperforated panels (MPPs) and porous structures, are ineffective in alleviating low-frequency noise. In this context, a sound-absorbing panel consisting of two axially coiled-up tubes and MPP is proposed for effective low-frequency noise abatement. Initially, an electro-acoustic analogy-based analytical approach is developed to predict the acoustic absorption performance of series and parallel configurations of MPP and coiled-up tubes, and the findings are corroborated by full-field finite element simulations. The parametric analyses revealed that by carefully choosing the geometric features of the coiled-up tubes, the absorption spectra of each tube can be coupled with that of MPP. Thus the bandwidth of absorption can be broadened. Furthermore, it is observed that the parallel configuration of MPP and coiled-up tubes significantly lowered the thickness of the absorber without affecting the absorption bandwidth. Importantly, the parallel configuration of MPP and coiled-up space demonstrated more than 80% absorption in the frequency range of 250–350 Hz.

References

1.
J. L.
,
Blickley
, and
G. L.
,
Patricelli
,
2010
, “
Impacts of Anthropogenic Noise on Wildlife: Research Priorities for the Development of Standards and Mitigation
,”
J. Int. Wildlife Law Policy
,
13
(
4
), pp.
274
292
.
2.
Miedema
,
H.
, and
Oudshoorn
,
C.
,
2001
, “
Annoyance From Transportation Noise: Relationships With Exposure Metrics DNL and DENL and Their Confidence Intervals.
,”
Environ. Health Perspect.
,
109
(
4
), pp.
409
416
.
3.
Pathak
,
V.
, and
Tripathi
,
B.
,
2008
, “
Evaluation of Traffic Noise Pollution and Attitudes of Exposed Individuals in Working Place
,”
Atmos. Environ.
,
42
(
16
), pp.
3892
3898
.
4.
Singh
,
N.
, and
Davar
,
S. C.
,
2004
, “
Noise Pollution-Sources, Effects and Control
,”
J. Hum. Ecol.
,
16
(
3
), pp.
181
187
.
5.
Berglund
,
B.
,
Lindvall
,
T.
,
Schwela
,
D. H.
, and
World Health Organization
,
1999
,
Guidelines for Community Noise
,
World Health Organization
,
Geneva
.
6.
Albert
,
D. G.
, and
Decato
,
S. N.
,
2017
, “
Acoustic and Seismic Ambient Noise Measurements in Urban and Rural Areas
,”
Appl. Acoust.
,
119
, pp.
135
143
.
7.
Van Kempen
,
E.
,
Casas
,
M.
,
Pershagen
,
G.
, and
Foraster
,
M.
,
2018
, “
WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Cardiovascular and Metabolic Effects: A Summary
,”
Int. J. Environ. Res. Public Health
,
15
(
2
), p.
379
.
8.
Licitra
,
G.
,
Fredianelli
,
L.
,
Petri
,
D.
, and
Vigotti
,
M. A.
,
2016
, “
Annoyance Evaluation Due to Overall Railway Noise and Vibration in Pisa Urban Areas
,”
Sci. Total Environ.
,
568
, pp.
1315
1325
.
9.
Pathak
,
V.
, and
Tripathi
,
B.
,
2008
, “
Evaluation of Traffic Noise Pollution and Attitudes of Exposed Individuals in Working Place
,”
Atmos. Environ.
,
42
(
16
), pp.
3892
3898
.
10.
Münzel
,
T.
,
Kröller-Schön
,
S.
,
Oelze
,
M.
,
Gori
,
T.
,
Schmidt
,
F. P.
,
Steven
,
S.
, and
Hahad
,
O.
,
2020
, “
Adverse Cardiovascular Effects of Traffic Noise With a Focus on Nighttime Noise and the New WHO Noise Guidelines
,”
Ann. Rev. Public Health
,
41
(
1
), pp.
309
328
.
11.
Seo
,
S.-H.
, and
Kim
,
Y.-H.
,
2005
, “
Silencer Design by Using Array Resonators for Low-Frequency Band Noise Reduction
,”
J. Acoust. Soc. Am.
,
118
(
4
), pp.
2332
2338
.
12.
Yang
,
Z.
,
Dai
,
H. M.
,
Chan
,
N. H.
,
Ma
,
G. C.
, and
Sheng
,
P.
,
2010
, “
Acoustic Metamaterial Panels for Sound Attenuation in the 50–1000 Hz Regime
,”
Appl. Phys. Lett.
,
96
(
4
), p.
041906
.
13.
Berglund
,
B.
,
Hassmen
,
P.
, and
Job
,
R. S.
,
1996
, “
Sources and Effects of Low-Frequency Noise
,”
J. Acoust. Soc. Am.
,
99
(
5
), pp.
2985
3002
.
14.
Waye
,
K.
,
2011
, “Effects of Low Frequency Noise and Vibrations: Environmental and Occupational Perspectives,”
Encyclopedia of Environmental Health
,
J.
Nriagu
, ed.,
Elsevier
,
Burlington, VT
, pp.
240
253
.
15.
Leventhall
,
H. G.
,
2004
, “
Low Frequency Noise and Annoyance
,”
Noise Health
,
6
(
23
), p.
59
.
16.
Mahesh
,
K.
,
Ranjith
,
S. K.
, and
Mini
,
R.
,
2024
, “
Recent Advancements in Helmholtz Resonator Based Low-Frequency Acoustic Absorbers: A Critical Review
,”
Arch. Comput. Methods Eng.
,
31
(
4
), pp.
2079
2107
.
17.
Ma
,
G.
, and
Sheng
,
P.
,
2016
, “
Acoustic Metamaterials: From Local Resonances to Broad Horizons
,”
Sci. Adv.
,
2
(
2
), p.
e1501595
.
18.
Mahesh
,
K.
, and
Mini
,
R.
,
2019
, “
Helmholtz Resonator Based Metamaterials for Sound Manipulation
,”
J. Phys. Conf. Ser.
,
1355
(
1
), p.
012031
.
19.
Mahesh
,
K.
,
Anoop
,
P.
,
Damodaran
,
P.
,
Ranjith
,
S. K.
, and
Mini
,
R.
,
2023
, “
Ultra-Low-Frequency Broadband Sound Absorption Characteristics of an Acoustic Metasurface With Pie-Sliced Unit Cells
,”
Arabian J. Sci. Eng.
,
48
(
9
), pp.
12247
12257
.
20.
Yang
,
M.
, and
Sheng
,
P.
,
2023
, “
Acoustic Metamaterial Absorbers: The Path to Commercialization
,”
Appl. Phys. Lett.
,
122
(
26
), p.
260504
.
21.
Fan
,
J.
,
Song
,
B.
,
Zhang
,
L.
,
Wang
,
X.
,
Zhang
,
Z.
,
Wei
,
S.
,
Xiang
,
X.
,
Zhu
,
X.
, and
Shi
,
Y.
,
2023
, “
Structural Design and Additive Manufacturing of Multifunctional Metamaterials With Low-Frequency Sound Absorption and Load-Bearing Performances
,”
Int. J. Mech. Sci.
,
238
, p.
107848
.
22.
Liang
,
B.
,
Kan
,
W.-W.
,
Zou
,
X.-Y.
,
Yin
,
L.-L.
, and
Cheng
,
J.-C.
,
2014
, “
Acoustic Transistor: Amplification and Switch of Sound by Sound
,”
Appl. Phys. Lett.
,
105
(
8
), p.
083510
.
23.
Xie
,
Y.
,
Shen
,
C.
,
Wang
,
W.
,
Li
,
J.
,
Suo
,
D.
,
Popa
,
B.-I.
,
Jing
,
Y.
, and
Cummer
,
S. A.
,
2016
, “
Acoustic Holographic Rendering With Two-Dimensional Metamaterial-Based Passive Phased Array
,”
Sci. Rep.
,
6
(
1
), pp.
1
6
.
24.
Zhang
,
Z.
,
Cheng
,
Y.
,
Liu
,
X.
, and
Christensen
,
J.
,
2019
, “
Subwavelength Multiple Topological Interface States in One-Dimensional Labyrinthine Acoustic Metamaterials
,”
Phys. Rev. B
,
99
(
22
), p.
224104
.
25.
Wu
,
X.
,
Fu
,
C.
,
Li
,
X.
,
Meng
,
Y.
,
Gao
,
Y.
,
Tian
,
J.
,
Wang
,
L.
,
Huang
,
Y.
,
Yang
,
Z.
, and
Wen
,
W.
,
2016
, “
Low-Frequency Tunable Acoustic Absorber Based on Split Tube Resonators
,”
Appl. Phys. Lett.
,
109
(
4
), p.
043501
.
26.
Chen
,
W.
,
Wu
,
F.
,
Wen
,
J.
,
Ju
,
Z.
,
Yao
,
L.
,
Zhao
,
H.
,
Wang
,
Y.
, and
Xiao
,
Y.
,
2020
, “
Low-Frequency Sound Absorber Based on Micro-slit Entrance and Space-Coiling Channels
,”
Jpn. J. Appl. Phys.
,
59
(
4
), p.
045503
.
27.
Cai
,
X.
,
Guo
,
Q.
,
Hu
,
G.
, and
Yang
,
J.
,
2014
, “
Ultrathin Low-Frequency Sound Absorbing Panels Based on Coplanar Spiral Tubes Or Coplanar Helmholtz Resonators
,”
Appl. Phys. Lett.
,
105
(
12
), p.
121901
.
28.
Guo
,
J.
,
Zhang
,
X.
,
Fang
,
Y.
, and
Jiang
,
Z.
,
2020
, “
A Compact Low-Frequency Sound-Absorbing Metasurface Constructed by Resonator With Embedded Spiral Neck
,”
Appl. Phys. Lett.
,
117
(
22
), p.
221902
.
29.
Chen
,
C.
,
Du
,
Z.
,
Hu
,
G.
, and
Yang
,
J.
,
2017
, “
A Low-Frequency Sound Absorbing Material With Subwavelength Thickness
,”
Appl. Phys. Lett.
,
110
(
22
), p.
221903
.
30.
Li
,
X.
,
Wu
,
Q.
,
Kang
,
L.
, and
Liu
,
B.
,
2019
, “
Design of Multiple Parallel-Arranged Perforated Panel Absorbers for Low Frequency Sound Absorption
,”
Materials
,
12
(
13
), p.
2099
.
31.
Liu
,
X.
,
Wang
,
C.
,
Zhang
,
Y.
, and
Huang
,
L.
,
2021
, “
Investigation of Broadband Sound Absorption of Smart Micro-Perforated Panel (MPP) Absorber
,”
Int. J. Mech. Sci.
,
199
, p.
106426
.
32.
Zhao
,
X.
, and
Fan
,
X.
,
2015
, “
Enhancing Low Frequency Sound Absorption of Micro-perforated Panel Absorbers by Using Mechanical Impedance Plates
,”
Appl. Acoust.
,
88
, pp.
123
128
.
33.
Zhang
,
W.
, and
Xin
,
F.
,
2023
, “
Coiled-Up Structure With Porous Material Lining for Enhanced Sound Absorption
,”
Int. J. Mech. Sci.
,
256
, p.
108480
.
34.
Mahesh
,
K.
,
Kumar Ranjith
,
S.
, and
Mini
,
R.
,
2021
, “
Inverse Design of a Helmholtz Resonator Based Low-Frequency Acoustic Absorber Using Deep Neural Network
,”
J. Appl. Phys.
,
129
(
17
), p.
174901
.
35.
Mahesh
,
K.
,
Ranjith
,
S. K.
, and
Mini
,
R.
,
2023
, “
A Deep Autoencoder Based Approach for the Inverse Design of an Acoustic-Absorber
,”
Eng. Comput.
,
40
(
1
), pp.
279
300
.
36.
Yang
,
W.
,
Choy
,
Y.
, and
Li
,
Y.
,
2023
, “
Acoustical Performance of a Wavy Micro-perforated Panel Absorber
,”
Mech. Syst. Signal Process.
,
185
, p.
109766
.
37.
Catapane
,
G.
,
Petrone
,
G.
, and
Robin
,
O.
,
2023
, “
Series and Parallel Coupling of 3d Printed Micro-perforated Panels and Coiled Quarter Wavelength Tubes
,”
J. Acoust. Soc. Am.
,
154
(
5
), pp.
3027
3040
.
38.
Maa
,
D. Y.
,
1998
, “
Potential of Microperforated Panel Absorber
,”
J. Acoust. Soc. Am.
,
104
(
5
), pp.
2861
2866
.
39.
Sakagami
,
K.
,
Morimoto
,
M.
, and
Yairi
,
M.
,
2009
, “
A Note on the Relationship Between the Sound Absorption by Microperforated Panels and Panel/Membrane-Type Absorbers
,”
Appl. Acoust.
,
70
(
8
), pp.
1131
1136
.
40.
Gai
,
X.-L.
,
Li
,
X.-H.
,
Zhang
,
B.
,
Xing
,
T.
,
Zhao
,
J.-J.
, and
Ma
,
Z.-H.
,
2016
, “
Experimental Study on Sound Absorption Performance of Microperforated Panel With Membrane Cell
,”
Appl. Acoust.
,
110
, pp.
241
247
.
41.
Xiaoling
,
G.
,
Tuo
,
X.
,
Zhang
,
B.
, and
Wenjiang
,
W.
,
2016
, “
Sound Absorption of Microperforated Panel Mounted With Helmholtz Resonators
,”
Appl. Acoust.
,
114
, pp.
260
265
.
42.
Mahesh
,
K.
, and
Mini
,
R.
,
2021
, “
Theoretical Investigation on the Acoustic Performance of Helmholtz Resonator Integrated Microperforated Panel Absorber
,”
Appl. Acoust.
,
178
(
7
), p.
108012
.
43.
Boccaccio
,
M.
,
Bucciarelli
,
F.
,
Malfense Fierro
,
G. P.
, and
Meo
,
M.
,
2021
, “
Microperforated Panel and Deep Subwavelength Archimedean-Inspired Spiral Cavities for Multi-tonal and Broadband Sound Absorption
,”
Appl. Acoust.
,
176
(
5
), p.
107901
.
44.
Wang
,
Y.
,
Yuan
,
H.
,
Wang
,
Y.
,
Xu
,
J.
,
Yu
,
H.
,
Zhang
,
C.
, and
Ren
,
L.
,
2022
, “
A Study on Ultra-Thin and Ultra-Broadband Acoustic Performance of Micro-perforated Plate Coupled With Coiled-Up Space Structure
,”
Appl. Acoust.
,
200
, p.
109048
.
45.
Govind Krishna
,
D. S.
,
Leena
,
P. A.
,
Karottuthundathil
,
A.
,
Mohammed
,
A.
,
Kavungal
,
M.
, and
Sahadevan
,
M. R.
,
2024
, “
Investigation on the Acoustic Performance of Micro-perforated Panel Integrated Coiled-Up Space Acoustic Absorber
,”
Eng. Proc.
,
59
(
1
), p.
168
.
46.
Long
,
H.
,
Cheng
,
Y.
,
Tao
,
J.
, and
Liu
,
X.
,
2017
, “
Perfect Absorption of Low-Frequency Sound Waves by Critically Coupled Subwavelength Resonant System
,”
Appl. Phys. Lett.
,
110
(
2
), p.
023502
.
47.
Liu
,
C. R.
,
Wu
,
J. H.
,
Yang
,
Z.
, and
Ma
,
F.
,
2020
, “
Ultra-Broadband Acoustic Absorption of a Thin Microperforated Panel Metamaterial With Multi-Order Resonance
,”
Compos. Struct.
,
246
, p.
112366
.
48.
Yazaki
,
T.
,
Tashiro
,
Y.
, and
Biwa
,
T.
,
2007
, “
Measurements of Sound Propagation in Narrow Tubes
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
463
(
2087
), pp.
2855
2862
.
49.
Allard
,
J. F.
,
1993
,
Sound Propagation in Porous Materials Having a Rigid Frame
,
Springer Netherlands
,
Dordrecht
, pp.
79
117
.
50.
Liu
,
Z.
,
Zhan
,
J.
,
Fard
,
M.
, and
Davy
,
J. L.
,
2017
, “
Acoustic Properties of Multilayer Sound Absorbers With a 3d Printed Micro-perforated Panel
,”
Appl. Acoust.
,
121
, pp.
25
32
.
51.
ISO 10534-2:2023
,
2023
,
Acoustics — Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes Part 2: Transfer-function method
,
International Organization for Standardization
.
52.
ASTM E1050-12
,
2019
,
Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System
,
ASTM International
.
53.
Cheng
,
B.
,
Wang
,
M.
,
Gao
,
N.
, and
Hou
,
H.
,
2022
, “
Machine Learning Inversion Design and Application Verification of a Broadband Acoustic Filtering Structure
,”
Appl. Acoust.
,
187
, p.
108522
.
54.
Guo
,
J.
,
Fang
,
Y.
,
Jiang
,
Z.
, and
Zhang
,
X.
,
2020
, “
Acoustic Characterizations of Helmholtz Resonators With Extended Necks and Their Checkerboard Combination for Sound Absorption
,”
J. Phys. D: Appl. Phys.
,
53
(
50
), p.
505504
.
55.
Romero-García
,
V.
,
Theocharis
,
G.
,
Richoux
,
O.
, and
Pagneux
,
V.
,
2016
, “
Use of Complex Frequency Plane to Design Broadband and Sub-wavelength Absorbers
,”
J. Acoust. Soc. Am.
,
139
(
6
), pp.
3395
3403
.
56.
Zhao
,
L.
, and
Lin
,
T. R.
,
2022
, “
A Turned Double-Layer Microperforated Panel for Low Frequency Sound Absorption in Enclosures With Limited Cavity Space
,”
Appl. Acoust.
,
188
, p.
108594
.
57.
Wu
,
F.
,
Xiao
,
Y.
,
Yu
,
D.
,
Zhao
,
H.
,
Wang
,
Y.
, and
Wen
,
J.
,
2019
, “
Low-Frequency Sound Absorption of Hybrid Absorber Based on Micro-perforated Panel and Coiled-Up Channels
,”
Appl. Phys. Lett.
,
114
(
15
), p.
151901
.
You do not currently have access to this content.